The following data are obtained when dinitrogen and dioxygen react together to form different compounds:
Mass of dinitrogen Mass of dioxygen
(i) 14 g 16 g
(ii) 14 g 32 g
(iii) 28 g 32 g
(iv) 28 g 80 g
(a) Which law of chemical combination is obeyed by the above experimental data?Give its statement.
(b) Fill in the blanks in the following conversions:
(i) 1 km = ...................... mm = ...................... pm
(ii) 1 mg = ...................... kg = ...................... ng
(iii) 1 mL = ...................... L = ...................... dm3
Let us fix 14 parts by weight of nitrogen as fixed weight.
Now let us calculate the weights of oxygen which combine with 14 parts by weight of nitrogen
Sno |
No of parts by weight of nitrogen |
No of parts by weight of oxygen |
14 parts of nitrogen as fixed weight |
No of parts by weight of oxygen which combine with 14 parts by weight of nitrogen |
1 |
14g |
16g |
14g |
16 |
2 |
14g |
32g |
14g |
32 |
3 |
28g |
32g |
14g |
32 |
4 |
28g |
80g |
14g |
80 |
(a) If we fix the mass of dinitrogen at 14 g, then the masses of dioxygen that will combine with the fixed mass of dinitrogen are 16 g, 32 g, 32 g, and 80 g.
The masses of dioxygen bear a whole number ratio of 1:2:2:5. Hence, the given experimental data obeys the law of multiple proportions.
This law was given by Dalton in 1804. The law states that if two elements combine to form 2 or more compound, then the weight of one element which combines a fixed weight of other element in these compounds,bears a simple whole number ratio by weight.
(b) (i) We know 1km=1000m
Or 1m = 1000 mm
Therefore 1km = 1000x 1000mm= 106 mm
1 km = 1 km ×
1 km = 1015 pm
Hence, 1 km = 106 mm = 1015 pm
(ii) We know 1kg = 1000mg
Or 1000mg= 1kg
Or 1mg= 1/1000* 1= 0.01 kg
1 mg = 1 mg ×
⇒ 1 mg = 106 ng
1 mg = 10–6 kg = 106 ng
(iii) We know 1000 ml=l L
Or 1ml=1/1000*1= 0.01L
1 mL = 1 cm3 = 1 cm3
⇒ 1 mL = 10–3 dm3
1 mL = 10–3 L = 10–3 dm3
Calculate the amount of carbon dioxide that could be produced when
(i) 1 mole of carbon is burnt in air.
(ii) 1 mole of carbon is burnt in 16 g of dioxygen.
(iii) 2 moles of carbon are burnt in 16 g of dioxygen.
In a reaction A + B2 → AB2 Identify the limiting reagent, if any, in the following reaction mixtures.
(i) 300 atoms of A + 200 molecules of B
(ii) 2 mol A + 3 mol B
(iii) 100 atoms of A + 100 molecules of B
(iv) 5 mol A + 2.5 mol B
(v) 2.5 mol A + 5 mol B
Which one of the following will have largest number of atoms?
(i) 1 g Au (s)
(ii) 1 g Na (s)
(iii) 1 g Li (s)
(iv) 1 g of Cl2(g)
Chlorine is prepared in the laboratory by treating manganese dioxide (MnO2) with aqueous hydrochloric acid according to the reaction
4HCl(aq) + MnO2(s) → 2H2O(l) + MnCl2(aq) + Cl2(g)
How many grams of HCl react with 5.0 g of manganese dioxide?
Determine the empirical formula of an oxide of iron which has 69.9% iron and 30.1% dioxygen by mass.
A sample of drinking water was found to be severely contaminated with chloroform, CHCl3, supposed to be carcinogenic in nature. The level of contamination was 15 ppm (by mass).
(i) Express this in percent by mass.
(ii) Determine the molality of chloroform in the water sample.
Calcium carbonate reacts with aqueous HCl to give CaCl2 and CO2 according to the reaction,
CaCO3(s) + 2 HCl(aq) → CaCl2(aq) + CO2(g) + H2O(l)
What mass of CaCO3 is required to react completely with 25 mL of 0.75 M HCl?
Calculate the mass of sodium acetate (CH3COONa) required to make 500 mL of 0.375 molar aqueous solution. Molar mass of sodium acetate is 82.0245 g mol–1
A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives 3.38 g carbon dioxide, 0.690 g of water and no other products. A volume of 10.0 L (measured at STP) of this welding gas is found to weigh 11.6 g. Calculate
(i) empirical formula,
(ii) molar mass of the gas, and
(iii) molecular formula.
How many significant figures are present in the following?
(i) 0.0025
(ii) 208
(iii) 5005
(iv) 126,000
(v) 500.0
(vi) 2.0034
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
Which important property did Mendeleev use to classify the elements in his periodic table and did he stick to that?
Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.
The ionization constant of propanoic acid is 1.32 x 10-5. Calculate the degree of ionization of the acid in its 0.05M solution and also its pH. What will be its degree of ionization if the solution is 0.01M in HCl also?
Yellow light emitted from a sodium lamp has a wavelength (λ) of 580 nm. Calculate the frequency (ν) and wave number () of the yellow light.
The diameter of zinc atom is 2.6 Å .
Calculate
(a) radius of zinc atom in pm and
(b) number of atoms present in a length of 1.6 cm if the zinc atoms are arranged side by side lengthwise.
A vessel of 120 mL capacity contains a certain amount of gas at 35 °C and 1.2 bar pressure. The gas is transferred to another vessel of volume 180 mL at 35 °C. What would be its pressure?
The reaction,
CO(g) + 3H2(g) ↔ CH4(g) + H2O(g)
is at equilibrium at 1300 K in a 1L flask. It also contain 0.30 mol of CO, 0.10 mol of H2 and 0.02 mol of H2O and an unknown amount of CH4 in the flask. Determine the concentration of CH4 in the mixture. The equilibrium constant, Kc for the reaction at the given temperature is 3.90.
34.05 mL of phosphorus vapour weighs 0.0625 g at 546 °C and 0.1 bar pressure. What is the molar mass of phosphorus?
Refer to the periodic table given in your book and now answer the following questions:
(a) Select the possible non metals that can show disproportionation reaction.
(b) Select three metals that can show disproportionation reaction.
2.9 g of a gas at 95 °C occupied the same volume as 0.184 g of dihydrogen at 17 °C, at the same pressure. What is the molar mass of the gas?
Thx
No it is given in the question itself that the ratio of dioxygrn is 16, 32 , 32, 80 so the whole no ratio with dinitrogen is 1:2:2:5
If we fix the mass of dinitrogen at 14 g, then masses of dioxygen will be 16 g, 32 g, 16 g, & 40 g. Then the ratio becomes 1:2:1:2.5. Is there any mismatch or i have understood wrong. Kindly clarify With regards Krishnaraj