A photon of wavelength 4 × 10–7 m strikes on metal surface, the work function of the metal being 2.13 eV. Calculate
(i) the energy of the photon (eV),
(ii) the kinetic energy of the emission, and
(iii) the velocity of the photoelectron (1 eV= 1.6020 × 10–19 J).
(1)We know λ = 4 × 10–7 m(given)
C = 3 x 108
From the equation E= hv or hc/ λ
Where, h = Planck’s constant = 6.626 × 10–34 Js
c = velocity of light in vacuum = 3 × 108 m/s
λ = wavelength of photon = 4 × 10–7 m
Substituting the values in the given expression of E:
Hence, the energy of the photon is 4.97 × 10–19 J.
(ii) The kinetic energy of emission Ek is given by
= (3.1020 – 2.13) eV
= 0.9720 eV
Hence, the kinetic energy of emission is 0.97 eV.
(iii) The velocity of a photoelectron (ν) can be calculated by the expression,
Where, (hv-hv0) is the kinetic energy of emission in Joules and ‘m’ is the mass of the photoelectron. Substituting the values in the given expression of v:
v = 5.84 × 105 ms–1
Hence, the velocity of the photoelectron is 5.84 × 105 ms–1.
The mass of an electron is 9.1 × 10–31 kg. If its K.E. is 3.0 × 10–25 J, calculate its wavelength.
Calculate the wavelength of an electron moving with a velocity of 2.05 × 107 ms–1.
Using s, p, d notations, describe the orbital with the following quantum numbers.
(a) n = 1, l = 0;
(b) n = 3; l =1
(c) n = 4; l = 2;
(d) n = 4; l =3.
Which of the following are isoelectronic species i.e., those having the same number of electrons?
Na+, K+, Mg2+, Ca2+, S2–, Ar
Calculate the wavelength, frequency and wave number of a light wave whose period is 2.0 × 10–10 s.
How many electrons in an atom may have the following quantum numbers?
(a) n = 4,
(b) n = 3, l = 0
Yellow light emitted from a sodium lamp has a wavelength (λ) of 580 nm. Calculate the frequency (ν) and wave number () of the yellow light.
Indicate the number of unpaired electrons in: (a) P, (b) Si, (c) Cr, (d) Fe and (e) Kr.
Calculate the wave number for the longest wavelength transition in the Balmer series of atomic hydrogen.
Find energy of each of the photons which
(i) correspond to light of frequency 3× 1015 Hz.
(ii) have wavelength of 0.50 Å.
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
What happens when
(a) Borax is heated strongly,
(b) Boric acid is added to water,
(c) Aluminium is treated with dilute NaOH,
(d) BF3 is reacted with ammonia?
Calculate the amount of carbon dioxide that could be produced when
(i) 1 mole of carbon is burnt in air.
(ii) 1 mole of carbon is burnt in 16 g of dioxygen.
(iii) 2 moles of carbon are burnt in 16 g of dioxygen.
What is meant by hybridisation of atomic orbitals? Describe the shapes of sp, sp2, sp3 hybrid orbitals.
Write balanced equations for reactions between
(a) Na2O2and water
(b) KO2 and water
(c) Na2O and CO2
Calculate the standard enthalpy of formation of CH3OH(l) from the following data:
CH3OH (l) + 3/2 O2(g) → CO2(g) + 2H2O(l) ; ΔrH0 = –726 kJ mol–1
C(g) + O2(g) → CO2(g) ; ΔcH0 = –393 kJ mol–1
H2(g) + 1/2 O2(g) → H2O(l) ; ΔfH0 = –286 kJ mol–1.
Which one of the following will have largest number of atoms?
(i) 1 g Au (s)
(ii) 1 g Na (s)
(iii) 1 g Li (s)
(iv) 1 g of Cl2(g)
In terms of period and group where would you locate the element with Z =114?
Describe the theory associated with the radius of an atom as it
(a) gains an electron
(b) loses an electron
Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base:
(a) OH–
(b) F–
(c) H+
(d) BCl3
What are allotropes? Sketch the structure of two allotropes of carbon namely diamond and graphite. What is the impact of structure on physical properties of two allotropes?
best useful material for jee mains & advanced lerners
please could you mind to help me with equations of 3000A and change to be 3.0*10m = f=3.0*10/3.0*10 just now
Caluclate the de-broglie wavelength for metal surface electron which have the work function 30joule and wavelength of photon which is provide to the metal surface is 10 rase power -6m
Yes their is some typing mistake the answer comes out to be 1.848988 * 10 to the power 4
I have a doubt because-: v2 =2Ã.97Ã1.6Ã10-19/9.1Ã10-31 When I solve this I got answer as 341Ã10power9 and after underroot I got answer as-:18.466Ã10power3 Please reply as soon as possible.