Calculate the standard cell potentials of galvanic cells in which the following reactions take place:
(i) 2Cr(s) + 3Cd2+(aq) → 2Cr3+(aq) + 3Cd
(ii) Fe2+(aq) + Ag+(aq) → Fe3+(aq) + Ag(s)
Calculate the ΔrGø¸ and equilibrium constant of the reactions.
(i) Eø Cr3+ / Cr = - 0.74 V
Eø Cd2+ / Cd = - 0.40 V
The galvanic cell of the given reaction is depicted as:
Now, the standard cell potential is
Eø = EøR - EøL
= -0.40 - (-0.74)
= + 0.34 V
ΔrGø = -nFEøcell
In the given equation,
n = 6
F = 96487 C mol - 1
Eøcell = +0.34 V
Then, ΔrGø = - 6 × 96487 C mol - 1 × 0.34 V
= - 196833.48 CV mol - 1
= - 196833.48 J mol - 1
= - 196.83 kJ mol - 1
Again,
ΔrGø = - RT ln K
= 34.496
K = antilog (34.496)
= 3.13 × 1034
(ii) Eø Fe3+ / Fe2+ = 0.77 V
Eø Ag+ / Ag = 0.80 V
The galvanic cell of the given reaction is depicted as:
Now, the standard cell potential is
Eø = EøR - EøL
= 0.80 - 0.77
= 0.03 L
Here, n = 1.
Then, ΔrGø = -nFEøcell
= - 1 × 96487 C mol - 1 × 0.03 V
= - 2894.61 J mol - 1
= - 2.89 kJ mol - 1
Again, ΔrGø = - 2.303 RT ln K
= 0.5073
K = antilog (0.5073)
= 3.2 (approximately)
If a current of 0.5 ampere flows through a metallic wire for 2 hours, then how many electrons would flow through the wire?
Calculate the emf of the cell in which the following reaction takes place:
Ni(s) + 2Ag+ (0.002 M) → Ni2+ (0.160 M) + 2Ag(s)
Given that Eøcell = 1.05 V
Depict the galvanic cell in which the reaction Zn(s) + 2Ag+(aq) → Zn2+(aq) + 2Ag(s) takes place.
Further show:
(i) Which of the electrode is negatively charged?
(ii) The carriers of the current in the cell.
(iii) Individual reaction at each electrode.
Write the Nernst equation and emf of the following cells at 298 K:
(i) Mg(s) | Mg2+(0.001M) || Cu2+(0.0001 M) | Cu(s)
(ii) Fe(s) | Fe2+(0.001M) || H+(1M)|H2(g)(1bar) | Pt(s)
(iii) Sn(s) | Sn2+(0.050 M) || H+(0.020 M) | H2(g) (1 bar) | Pt(s)
(iv) Pt(s) | Br2(l) | Br-(0.010 M) || H+(0.030 M) | H2(g) (1 bar) | Pt(s).
Define conductivity and molar conductivity for the solution of an electrolyte. Discuss their variation with concentration.
How would you determine the standard electrode potential of the system Mg2+ | Mg?
Predict the products of electrolysis in each of the following:
(i) An aqueous solution of AgNO3 with silver electrodes.
(ii) An aqueous solution of AgNO3with platinum electrodes.
(iii) A dilute solution of H2SO4with platinum electrodes.
(iv) An aqueous solution of CuCl2 with platinum electrodes.
A solution of Ni(NO3)2 is electrolysed between platinum electrodes using a current of 5 amperes for 20 minutes. What mass of Ni is deposited at the cathode?
The resistance of a conductivity cell containing 0.001M KCl solution at 298 K is 1500 Ω. What is the cell constant if conductivity of 0.001M KCl solution at 298 K is 0.146 x 10-3 S cm-1.
Conductivity of 0.00241 M acetic acid is 7.896 × 10 - 5 S cm - 1. Calculate its molar conductivity and if Amº for acetic acid is 390.5 S cm2 mol - 1, what is its dissociation constant?
For the reaction R → P, the concentration of a reactant changes from 0.03 M to 0.02 M in 25 minutes. Calculate the average rate of reaction using units of time both in minutes and seconds.
Write the formulas for the following coordination compounds:
(i) Tetraamminediaquacobalt (III) chloride
(ii) Potassium tetracyanonickelate(II)
(iii) Tris(ethane-1,2-diamine) chromium(III) chloride
(iv) Amminebromidochloridonitrito-N-platinate(II)
(v) Dichloridobis(ethane-1,2-diamine)platinum(IV) nitrate
(vi) Iron(III) hexacyanoferrate(II)
(i) Write structures of different isomeric amines corresponding to the molecular formula, C4H11N
(ii) Write IUPAC names of all the isomers.
(iii) What type of isomerism is exhibited by different pairs of amines?
Why are solids rigid?
Write any two characteristics of Chemisorption.
Write the structures of the following compounds.
(i) α-Methoxypropionaldehyde
(ii) 3-Hydroxybutanal
(iii) 2-Hydroxycyclopentane carbaldehyde
(iv) 4-Oxopentanal
(v) Di-sec-butyl ketone
(vi) 4-Fluoroacetophenone
Which of the ores mentioned in Table 6.1 can be concentrated by magnetic separation method?
Why are pentahalides more covalent than trihalides?
Silver atom has completely filled d orbitals (4d10) in its ground state. How can you say that it is a transition element?
Glucose or sucrose are soluble in water but cyclohexane or benzene (simple six membered ring compounds) are insoluble in water. Explain.
Classify the following as amorphous or crystalline solids:
Polyurethane, naphthalene, benzoic acid, teflon, potassium nitrate, cellophane, polyvinyl chloride, fibre glass, copper.
Where does the water present in the egg go after boiling the egg?
You are given benzene, conc. H2SO4 and NaOH. Write the equations for the preparation of phenol using these reagents.
What is glycogen? How is it different from starch?
Define the following terms:
(i) Mole fraction (ii) Molality (iii) Molarity (iv) Mass percentage.
Benzene and toluene form ideal solution over the entire range of composition. The vapour pressure of pure benzene and toluene at 300 K are 50.71 mm Hg and 32.06 mm Hg respectively. Calculate the mole fraction of benzene in vapour phase if 80 g of benzene is mixed with 100 g of toluene.
How the following conversions can be carried out?
(i) Propene to propan-1-ol
(ii) Ethanol to but-1-yne
(iii) 1-Bromopropane to 2-bromopropane
(iv) Toluene to benzyl alcohol
(v) Benzene to 4-bromonitrobenzene
(vi) Benzyl alcohol to 2-phenylethanoic acid
(vii) Ethanol to propanenitrile
(viii) Aniline to chlorobenzene
(ix) 2-Chlorobutane to 3, 4-dimethylhexane
(x) 2-Methyl-1-propene to 2-chloro-2-methylpropane
(xi) Ethyl chloride to propanoic acid
(xii) But-1-ene to n-butyliodide
(xiii) 2-Chloropropane to 1-propanol
(xiv) Isopropyl alcohol to iodoform
(xv) Chlorobenzene to p-nitrophenol
(xvi) 2-Bromopropane to 1-bromopropane
(xvii) Chloroethane to butane
(xviii) Benzene to diphenyl
(xix) tert-Butyl bromide to isobutyl bromide
(xx) Aniline to phenylisocyanide
What are the hydrolysis products of (i)sucrose and (ii)lactose?
Calculate the 'spin only' magnetic moment of M2+(aq) ion (Z = 27).
Explain the following with an example.
(i) Kolbe's reaction.
(ii) Reimer-Tiemann reaction.
(iii) Williamson ether synthesis.
(iv) Unsymmetrical ether.
Very helpful to me