NCERT Solutions for Class 12th mathematics covers all the questions given in the NCERT book. You can study and download these question and their solutions free from this page. These solutions are solved by our specialists at SaralStudy.com, that will assist all the students of respective boards, including CBSE, who follows NCERT; with tackling all the questions easily. We give chapter wise complete solutions for your straightforwardness.

- Chapter 1 Relations and Functions
- Chapter 2 Inverse Trigonometric Functions
- Chapter 3 Matrices
- Chapter 4 Determinants
- Chapter 6 Application of Derivatives
- Chapter 7 Integrals
- Chapter 8 Application of Integrals
- Chapter 9 Differential Equations
- Chapter 10 Vector Algebra
- Chapter 11 Three Dimensional Geometry
- Chapter 12 Linear Programming
- Chapter 13 Probability

## Popular Questions of Class 12th mathematics

- Q:- Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y} - Q:- Given an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive. - Q:- Show that each of the relation R in the set A = { x ∈Z: 0≤x≤12}, A={x} given by

(i) R = { (a,b) : |a - b| is a multiple of 4}

(ii) R = {(a,b):a = b} is an equivalence relation.

Find the set of all elements related to 1 in each case. - Q:-
Check the injectivity and surjectivity of the following functions:

(i)

*f*:**N → N**given by*f(x*) = x^{2}(ii)

*f*:**Z → Z**given by*f(x)*= x^{2}(iii)

*f*:**R → R**given by*f(x)*= x^{2}(iv)

*f*:**N → N**given by*f(x)*= x^{3}(v)

*f*:**Z → Z**given by*f(x)*= x^{3 } - Q:- If a matrix has 24 elements, what are the possible order it can have? What, if it has 13 elements?
- Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b
^{2}} is neither reflexive nor symmetric nor transitive. - Q:- Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
- Q:- Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.
- Q:- If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?
- Q:-
Prove that the Greatest Integer Function

*f*: R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.

## Recently Viewed Questions of Class 12th mathematics

- Q:- Find the principal value of \begin{align} cos^{-1}\left(-\frac{1}{\sqrt2}\right)\end{align}
- Q:- Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y} - Q:- Find the principal value of \begin{align} tan^{-1}\left(-\sqrt3\right)\end{align}
- Q:- Given an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive. - Q:-
The order of the differential equation

\begin{align}2x^2\frac{d^2y}{dx^2}\;- \;3\frac{dy}{dx}\;+ y=\;0\end{align}

is

**(A)**2**(B)**1**(C)**0**(D)**not defined - Q:- Find the principal value of \begin{align} sin^{-1}\left(-\frac{1}{2}\right)\end{align}
- Q:- If A = \(\begin{bmatrix}1 & 1 & -2\\2 & 1 & -3\\5 & 4 & -9\end{bmatrix}\), Find |A|
- Q:-
The total cost

*C*(*x*) in Rupees associated with the production of*x*units of an item is given byC(X) = 0.007 x

^{3}- 0.003x^{2}+ 15x + 4000Find the marginal cost when 17 units are produced.

- Q:- be a function defined as. The inverse of
*f*is map*g*: Range(A)

(B)

(C)

(D)

">**Letbe a function defined as. The inverse of***f*is map*g*: Range(A)

(B)

(C)

(D)

- Q:-
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

(i)

*f*:**R → R**defined by*f(x)*= 3 – 4x(ii)

*f*:**R → R**defined by*f(x)*= 1 + x^{2 }