The vertices of ΔABC are A (3, 5, −4), B (−1, 1, 2), and C (−5, −5, −2).
The vertices of ΔABC are A (3, 5, −4), B (−1, 1, 2), and C (−5, −5, −2).
The direction ratios of side AB are (−1 − 3), (1 − 5), and (2 − (−4)) i.e., −4, −4, and 6.
Therefore, the direction cosines of AB are
The direction ratios of BC are (−5 − (−1)), (−5 − 1), and (−2 − 2) i.e., −4, −6, and −4.
Therefore, the direction cosines of BC are
The direction ratios of CA are (−5 − 3), (−5 − 5), and (−2 − (−4)) i.e., −8, −10, and 2.
Therefore, the direction cosines of AC are
Find the direction cosines of a line which makes equal angles with the coordinate axes.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
A balloon, which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm.
The radius of a circle is increasing at the rate of 0.7 cm/s. What is the rate of increase of its circumference?
The rate of change of the area of a circle with respect to its radius r at r = 6 cm is
(A) 10π (B) 12π (C) 8π (D) 11π
Let f : {1, 3, 4} → {1, 2, 5} and g : {1, 2, 5} → {1, 3} be given by f = {(1, 2), (3, 5), (4, 1)} and g = {(1, 3), (2, 3), (5, 1)}. Write down gof.
Let A and B be sets. Show that f : A × B → B × A such that f(a, b) = (b, a) is bijective function.
Consider f : R+ → [– 5, ∞) given by f(x) = 9x2 + 6x – 5. Show that f is invertible
with .