Question 9

Consider *f* : R_{+} → [– 5, ∞) given by *f(x)* = 9x^{2} + 6x – 5. Show that* f* is invertible

with **.**

Answer

*f*: R_{+} → [ - 5, ∞) is given as *f*(*x*) = 9x^{2} + 6*x* - 5.

Let *y* be an arbitrary element of [ - 5, ∞).

Let *y* = 9x^{2} + 6*x* - 5.

∴*f* is onto, thereby range *f* = [ - 5, ∞).

Let us define *g*: [ - 5, ∞) → **R**_{+} as

We now have:

∴ *gof = I*_{R+ }and

Hence, *f* is invertible and the inverse of *f* is given by

- Q:- Given an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive. - Q:- Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y} - Q:- Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.
- Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b
^{2}} is neither reflexive nor symmetric nor transitive. - Q:-
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

(i)

*f*:**R → R**defined by*f(x)*= 3 – 4x(ii)

*f*:**R → R**defined by*f(x)*= 1 + x^{2 } - Q:- Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
- Q:-
Show that the Modulus Function

*f*: R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative. - Q:- Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as

R = {(a, b): b = a + 1} is reflexive, symmetric or transitive. - Q:-
Prove that the Greatest Integer Function

*f*: R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x. - Q:- Show that each of the relation R in the set A = { x ∈Z: 0≤x≤12}, A={x} given by

(i) R = { (a,b) : |a - b| is a multiple of 4}

(ii) R = {(a,b):a = b} is an equivalence relation.

Find the set of all elements related to 1 in each case.

- Q:-
Consider

*f*: {1, 2, 3} → {a, b, c} given by*f(1)*= a,*f(2)*= b and*f(3)*= c. Find*f*and show that^{ –1}*(f*=^{ –1})^{–1}*f*. - Q:- Given an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive. - Q:- sin 2x – 4e
^{3x} - Q:-
Let

*f*: X → Y be an invertible function. Show that*f*has unique inverse.(Hint: suppose g1 and g2 are two inverses of f. Then for all

*y ∈ Y, fog1(y) = 1Y(y) = fog2(y)*. Use one-one ness of*f*). - Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b
^{2}} is neither reflexive nor symmetric nor transitive. - Q:-
An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long?

- Q:-
Let

*f*: R → R be defined as f(x) = 3x. Choose the correct answer.(A)

*f*is one-one onto(B)

*f*is many-one onto(C)

*f*is one-one but not onto(D)

*f*is neither one-one nor onto. - Q:- Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as

R = {(a, b): b = a + 1} is reflexive, symmetric or transitive. - Q:- Find the rate of change of the area of a circle with respect to its radius r when

(a) r = 3 cm

(b) r = 4 cm - Q:- If a matrix has 24 elements, what are the possible order it can have? What, if it has 13 elements?

- NCERT Chapter

Copyright © 2022 saralstudy.com. All Rights Reserved.