Let A and B be sets. Show that f : A × B → B × A such that f(a, b) = (b, a) is bijective function.
f: A × B → B × A is defined as f(a, b) = (b, a).
.
∴ f is one-one.
Now, let (b, a) ∈ B × A be any element.
Then, there exists (a, b) ∈A × B such that f(a, b) = (b, a). [By definition of f]
∴ f is onto.
Hence,f is bijective.
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?
If f(x) = , show that fof(x) = x, for all x ≠ 2/3. What is the inverse of f ?
The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.
The total revenue in Rupees received from the sale of x units of a product is given by
R (x) = 13x2 + 26x + 15
Find the marginal revenue when x = 7.
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Determine order and degree(if defined) of differential equation \begin{align}\frac{d^2y}{dx^2}=\cos3x + sin3x\end{align}
FYI V1 recaptcha will shutdown this Saturday
d