The anti derivative of sin 2x is a function of x whose derivative is sin 2x.
It is known that,
\begin{align} \frac {d}{dx} (cos 2x) = 2 sin2x \end{align}
⇒ \begin{align} sin 2x =-\frac {1}{2} \frac {d}{dx}(cos 2x) \end{align}
∴ \begin{align} sin 2x = \frac {d}{dx}\left(-\frac {1}{2}cos 2x\right) \end{align}
Therefore, the anti derivative of sin2x is
\begin{align} sin 2x \;is -\frac {1}{2}cos 2x \end{align}
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.
Determine order and degree(if defined) of differential equation (ym)2 + (yn)3 + (y')4 + y5 =0
The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.
Let f : N → N be defined by
State whether the function f is bijective. Justify your answer.
Let f : R → R be defined as f(x) = 3x. Choose the correct answer.
(A) f is one-one onto
(B) f is many-one onto
(C) f is one-one but not onto
(D) f is neither one-one nor onto.
Classify the following measures as scalars and vectors.
(i) 10 kg (ii) 2 metres north-west (iii) 40°
(iv) 40 watt (v) 10–19 coulomb (vi) 20 m/s2
The total revenue in Rupees received from the sale of x units of a product is given by
R (x) = 13x2 + 26x + 15
Find the marginal revenue when x = 7.
Show that the Signum Function f : R → R, given by
is neither one-one nor onto.
Determine order and degree(if defined) of differential y' + y =ex