Let x be the length of a side, V be the volume, and s be the surface area of the cube.
Then, V = x3 and S = 6x2 where x is a function of time t.
It is given that
\begin{align} \frac{dV}{dt} = 8 cm^3 / s \end{align}
Then, by using the chain rule, we have:
∴ \begin{align} \frac{dV}{dt} = \frac{d}{dt} (x^3) . \frac{dx}{dt} = 3x^2 . \frac{dx}{dt} =8 \end{align}
⇒ \begin{align} \frac{dx}{dt} = \frac{8}{3 x^2} ……… (1) \end{align}
Now \begin{align} \frac{dS}{dt} = \frac{d}{dx}(6x^2).\frac{dx}{dt} [By Chain Rule] \end{align}
\begin{align} =12x .\frac{dx}{dt} =12x.(\frac{8}{3x^2}) = \frac{32}{x} \end{align}
Thus, when x = 12 cm, \begin{align} \frac{dS}{dt} = \frac{32}{12} cm^2 / s = 8 cm^2 / s \end{align}
Hence, if the length of the edge of the cube is 12 cm, then the surface area is increasing at the rate of \begin{align} \frac{8}{3} cm^2 / s \end{align}.
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
The total cost C (x) in Rupees associated with the production of x units of an item is given by
C(X) = 0.007 x3 - 0.003x2 + 15x + 4000
Find the marginal cost when 17 units are produced.
Determine order and degree(if defined) of differential equation (ym)2 + (yn)3 + (y')4 + y5 =0
The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rates of change of (a) the perimeter, and (b) the area of the rectangle.
Show that the Signum Function f : R → R, given by
is neither one-one nor onto.
Let f : N → N be defined by
State whether the function f is bijective. Justify your answer.
Classify the following measures as scalars and vectors.
(i) 10 kg (ii) 2 metres north-west (iii) 40°
(iv) 40 watt (v) 10–19 coulomb (vi) 20 m/s2
An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long?