A balloon, which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm.
The volume of a sphere (V) with radius (r) is given by
\begin{align} V=\frac{4}{3 }\pi r^3\end{align}
Rate of change of volume (V) with respect to its radius (r) is given by,
\begin{align} \frac{dV}{dr }=\frac{d}{dr}\left(\frac{4}{3}\pi r^3\right)=\frac{4}{3}\pi \left(3r^2\right)=4\pi r^2\end{align}
Therefore, when radius = 10 cm,
\begin{align} \frac{dV}{dr }=4\pi(10)^2=400\pi\end{align}
Hence, the volume of the balloon is increasing at the rate of 400π cm3/s.
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Let f : R → R be defined as f(x) = x4. Choose the correct answer.
(A) f is one-one onto
(B) f is many-one onto
(C) f is one-one but not onto
(D) f is neither one-one nor onto.
Check the injectivity and surjectivity of the following functions:
(i) f : N → N given by f(x) = x2
(ii) f : Z → Z given by f(x) = x2
(iii) f : R → R given by f(x) = x2
(iv) f : N → N given by f(x) = x3
(v) f : Z → Z given by f(x) = x3
Find the direction cosines of a line which makes equal angles with the coordinate axes.
Let f: X → Y be an invertible function. Show that the inverse of f –1 is f, i.e., (f–1)–1 = f.
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.