The area of a circle (A) with radius (r) is given by,
A = πr^{2}
Now, the rate of change of the area with respect to its radius is given by,
\begin{align} \frac{dA}{dr} = \frac{d}{dr}(πr^2) = 2πr \end{align}
\begin{align} \frac{dA}{dr} = 2π (3) = 6π \end{align}
Hence, the area of the circle is changing at the rate of 6π cm^{2}/s when its radius is 3 cm.
\begin{align} \frac{dA}{dr} = 2π (4) = 8π \end{align}
Hence, the area of the circle is changing at the rate of 8π cm^{2}/s when its radius is 4 cm.
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x^{2 }
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
The order of the differential equation
\begin{align}2x^2\frac{d^2y}{dx^2}\;- \;3\frac{dy}{dx}\;+ y=\;0\end{align}
is (A) 2 (B) 1 (C) 0 (D) not defined
Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
A particle moves along the curve 6y = x^{3} + 2. Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate.
Let f : R → R be defined as f(x) = 3x. Choose the correct answer.
(A) f is one-one onto
(B) f is many-one onto
(C) f is one-one but not onto
(D) f is neither one-one nor onto.
Determine order and degree(if defined) of differential equation y^{m} + 2y^{n} + y' =0