Question 4

A short bar magnet of magnetic moment m = 0.32 JT^{-1}is placed in a uniform magnetic field of 0.15 T. If the bar is free to rotate in the plane of the field, which orientation would correspond to its (a) stable, and (b) unstable equilibrium? What is the potential energy of the magnet in each case?

Answer

Moment of the bar magnet, M= 0.32 J T^{-1}

External magnetic field, B= 0.15 T

(a)The bar magnet is aligned along the magnetic field. This system is considered as being in stable equilibrium. Hence, the angle θ, between the bar magnet and the magnetic field is 0°.

Potential energy of the system = - MB cosθ

=-0.32 x 0.15cos0°

=4.8 x 10^{-2} J

(b)The bar magnet is oriented 180°to the magnetic field. Hence, it is in unstable equilibrium.

θ = 180°

Potential energy = - MBcosθ

=-0.32 x 0.15cos180°

=4.8 x 10^{-2} J

- Q:- A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply.

(a) What is the rms value of current in the circuit?

(b) What is the net power consumed over a full cycle? - Q:-
An infinite line charge produces a field of 9 × 10

^{4}N/C at a distance of 2 cm. Calculate the linear charge density. - Q:- The work function of caesium metal is 2.14 eV. When light of frequency 6 ×10
^{14}Hz is incident on the metal surface, photoemission of electrons occurs. What is the(a) maximum kinetic energy of the emitted electrons,

(b) Stopping potential, and

(c) maximum speed of the emitted photoelectrons?

">The work function of caesium metal is 2.14 eV. When light of frequency 6 ×10

^{14}Hz is incident on the metal surface, photoemission of electrons occurs. What is the(a) maximum kinetic energy of the emitted electrons,

(b) Stopping potential, and

(c) maximum speed of the emitted photoelectrons?

- Q:-
Consider a uniform electric field E = 3 × 10

^{3}îN/C.(a) What is the flux of this field through a square of 10 cm on a side whose plane is parallel to the yz plane?

(b) What is the flux through the same square if the normal to its plane makes a 60° angle with the x-axis?

- Q:-
A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?

- Q:- ">
A point charge +10 μC is a distance 5 cm directly above the centre of a square of side 10 cm, as shown in Fig. 1.34. What is the magnitude of the electric flux through the square? (Hint: Think of the square as one face of a cube with edge 10 cm.)

- Q:-
Monochromatic light of wavelength 589 nm is incident from air on a water surface. What are the wavelength, frequency and speed of

(a) reflected, and

(b) refracted light? Refractive index of water is 1.33. - Q:-
A parallel plate capacitor with air between the plates has a capacitance of 8 pF (1pF = 10

^{-12}F). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6? - Q:-
Two point charges q

_{A}= 3 μC and q_{B}= −3 μC are located 20 cm apart in vacuum.(a) What is the electric field at the midpoint O of the line AB joining the two charges?

(b) If a negative test charge of magnitude 1.5 × 10

^{−9}C is placed at this point, what is the force experienced by the test charge? - Q:-
A polythene piece rubbed with wool is found to have a negative charge of 3 × 10

^{−7}C.(a) Estimate the number of electrons transferred (from which to which?)

(b) Is there a transfer of mass from wool to polythene?

- Q:- Obtain the formula for the electric field due to a long thin wire of uniform linear charge density λ without using Gauss’s law. [Hint: Use Coulomb’s law directly and evaluate the necessary integral.]">
Obtain the formula for the electric field due to a long thin wire of uniform linear charge density λ without using Gauss’s law. [Hint: Use Coulomb’s law directly and evaluate the necessary integral.]

- Q:- The electrostatic force on a small sphere of charge 0.4 μC due to another small sphere of charge − 0.8 μC in air is 0.2 N.
(a) What is the distance between the two spheres?

(b) What is the force on the second sphere due to the first?

">The electrostatic force on a small sphere of charge 0.4 μC due to another small sphere of charge − 0.8 μC in air is 0.2 N.

(a) What is the distance between the two spheres?

(b) What is the force on the second sphere due to the first?

- Q:-
A regular hexagon of side 10 cm has a charge 5 µC at each of its vertices. Calculate the potential at the centre of the hexagon.

- Q:-
What is the force between two small charged spheres having charges of 2 x 10

^{-7}C and 3 x 10^{-7}C placed 30 cm apart in air? - Q:-
In a certain region of space, electric field is along the z-direction throughout. The magnitude of electric field is, however, not constant but increases uniformly along the positive z-direction, at the rate of 10

^{5}NC^{-1 }per metre. What are the force and torque experienced by a system having a total dipole moment equal to 10^{-7}Cm in the negative z-direction? - Q:-
Check that the ratio ke

^{2}/G m_{e}m_{p}is dimensionless. Look up a Table of Physical Constants and determine the value of this ratio. What does the ratio signify? - Q:- A small candle, 2.5 cm in size is placed at 27 cm in front of a concave mirror of radius of curvature 36 cm. At what distance from the mirror should a screen be placed in order to obtain a sharp image? Describe the nature and size of the image. If the candle is moved closer to the mirror, how would the screen have to be moved?">
A small candle, 2.5 cm in size is placed at 27 cm in front of a concave mirror of radius of curvature 36 cm. At what distance from the mirror should a screen be placed in order to obtain a sharp image? Describe the nature and size of the image. If the candle is moved closer to the mirror, how would the screen have to be moved?

- Q:-
Consider a uniform electric field E = 3 × 10

^{3}îN/C.(a) What is the flux of this field through a square of 10 cm on a side whose plane is parallel to the yz plane?

(b) What is the flux through the same square if the normal to its plane makes a 60° angle with the x-axis?

- Q:-
**(b)****(c)****(d)****(e)**Which among the curves shown in Fig. 1.35 cannot possibly represent electrostatic field lines?

**(a)****(b)****(c)****(d)****(e)** - Q:-
A cube of side

*b*has a charge*q*at each of its vertices. Determine the potential and electric field due to this charge array at the centre of the cube.

- NCERT Chapter

Copyright © 2013-14 saralstudy.com. All Rights Reserved. Site Powered by Kochan Group