If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Here, α = 90° , β = 60°
Let γ = θº, where 0 ≤ θº ≤ π
Now cos2 α + cos2 β + cos2 γ = 1
⇒ cos2 90° + cos2 60° + cos2 θº = 1
⇒ 02 + (½)2 + cos2 θº = 1
cos2 θ = 1- 1/4 = 3/4
cos θ = ± √3 / 2
θ = π / 6 or 5π / 6
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Let A and B be sets. Show that f : A × B → B × A such that f(a, b) = (b, a) is bijective function.
Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
Show that the function f : R* → R* defined by f(x) = 1/x is one-one and onto,where R* is the set of all non-zero real numbers. Is the result true, if the domain R* is replaced by N with co-domain being same as R* ?