What effect does branching of an alkane chain has on its boiling point?
Alkanes experience inter-molecular Van der Waals forces. The stronger the force, the greater will be the boiling point of the alkane.
As branches increases, the surface area of molecule decreases resulting in a small area of contact. As a result, the Van der Waals force also decreases which can overcome at a relatively lower temperature. Hence, the boiling point of an alkane chain decreases with an increase in branches.
Addition of HBr to propene yields 2-bromopropane, while in the presence of benzoyl peroxide, the same reaction yields 1-bromopropane. Explain and give mechanism.
An alkene 'A' on ozonolysis gives a mixture of ethanal and pentan-3-one. Write structure and IUPAC name of 'A'.
Write IUPAC names of the products obtained by the ozonolysis of the following compounds:
(i) Pent-2-ene
(ii) 3,4-Dimethyl-hept-3-ene
(iii) 2-Ethylbut-1-ene
(iv) 1-Phenylbut-1-ene
How would you convert the following compounds into benzene?
(i) Ethyne (ii) Ethene (iii) Hexane
Why does benzene undergo electrophilic substitution reactions easily and nucleophilic substitutions with difficulty?
Arrange benzene, n-hexane and ethyne in decreasing order of acidic behaviour. Also give reason for this behaviour.
Explain why the following systems are not aromatic?
Why is Wurtz reaction not preferred for the preparation of alkanes containing odd number of carbon atoms? Illustrate your answer by taking one example.
Arrange the following set of compounds in order of their decreasing relative reactivity with an electrophile, E+
(a) Chlorobenzene, 2,4-dinitrochlorobenzene, p-nitrochlorobenzene
(b) Toluene, p-H3C-C6H4-NO2, p-O2N-C6H4-NO2.
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
Write the resonance structures for SO3, NO2 and .
The size of isoelectronic species — F–, Ne and Na+ is affected by
(a) Nuclear charge (Z )
(b) Valence principal quantum number (n)
(c) Electron-electron interaction in the outer orbitals
(d) None of the factors because their size is the same.
Explain the formation of H2 molecule on the basis of valence bond theory.
(i) Calculate the total number of electrons present in one mole of methane.
(ii) Find
(a) the total number and
(b) the total mass of neutrons in 7 mg of 14C. (Assume that mass of a neutron = 1.675 × 10–27 kg).
(iii) Find
(a) the total number and
(b) the total mass of protons in 34 mg of NH3 at STP.
Will the answer change if the temperature and pressure are chang
How are 0.50 mol Na2CO3 and 0.50 M Na2CO3 different?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
How can you explain higher stability of BCl3 as compared to TlCl3?
Find energy of each of the photons which
(i) correspond to light of frequency 3× 1015 Hz.
(ii) have wavelength of 0.50 Å.
What do you understand by the terms:
(i) hydrogen economy
(ii) hydrogenation
(iii) 'syngas'
(iv) water-gas shift reaction
(v) fuel-cell ?
How is excessive content of CO2 responsible for global warming?