What is the coordination entity formed when excess of aqueous KCN is added to an aqueous solution of copper sulphate? Why is it that no precipitate of copper sulphide is obtained when H2S(g) is passed through this solution?
CuSO4(aq) + 4KCN(aq) → K2[Cu(CN)4](aq) + K2SO4(aq)
i.e., [Cu(H2O)4]2+ + 4CN- → [Cu(CN)4]2- + 4H2O
Thus, the coordination entity formed in the process is K2[Cu(CN)4]. K2[Cu(CN)4 is a very stable complex, which does not ionize to give Cu2+ ions when added to water. Hence, Cu2+ ions are not precipitated when H2S(g) is passed through the solution.
[NiCl4]2- is paramagnetic while [Ni(CO)4] is diamagnetic though both are tetrahedral. Why?
Explain on the basis of valence bond theory that [Ni(CN)4]2- ion with square planar structure is diamagnetic and the [Ni(CN)4]2- ion with tetrahedral geometry is paramagnetic.
Draw figure to show the splitting of d orbitals in an octahedral crystal field.
Write down the IUPAC name for each of the following complexes and indicate the oxidation state, electronic configuration and coordination number. Also give stereochemistry and magnetic moment of the complex:
(i) K[Cr(H2O)2(C2O4)2].3H2O
(ii) [Co(NH3)5Cl]Cl2
(iii) CrCl3(py)3
(iv) Cs[FeCl4]
(v) K4[Mn(CN)6]
The oxidation number of cobalt in K[Co(CO)4] is
(i) +1
(ii) +3
(iii) -1
(iv) -3
[Cr(NH3)6]3+ is paramagnetic while [Ni(CN)4]2- is diamagnetic. Explain why?
Discuss the nature of bonding in metal carbonyls.
Discuss the nature of bonding in the following coordination entities on the basis of valence bond theory:
(i) [Fe(CN)6]4-
(ii) [FeF6]3-
(iii) [Co(C2O4)3]3-
(iv) [CoF6]3-
Write the formulas for the following coordination compounds:
(i) Tetraamminediaquacobalt (III) chloride
(ii) Potassium tetracyanonickelate(II)
(iii) Tris(ethane-1,2-diamine) chromium(III) chloride
(iv) Amminebromidochloridonitrito-N-platinate(II)
(v) Dichloridobis(ethane-1,2-diamine)platinum(IV) nitrate
(vi) Iron(III) hexacyanoferrate(II)
Predict the number of unpaired electrons in the square planar [Pt(CN)4]2- ion.
For the reaction R → P, the concentration of a reactant changes from 0.03 M to 0.02 M in 25 minutes. Calculate the average rate of reaction using units of time both in minutes and seconds.
(i) Write structures of different isomeric amines corresponding to the molecular formula, C4H11N
(ii) Write IUPAC names of all the isomers.
(iii) What type of isomerism is exhibited by different pairs of amines?
Why are solids rigid?
Write any two characteristics of Chemisorption.
Write the structures of the following compounds.
(i) α-Methoxypropionaldehyde
(ii) 3-Hydroxybutanal
(iii) 2-Hydroxycyclopentane carbaldehyde
(iv) 4-Oxopentanal
(v) Di-sec-butyl ketone
(vi) 4-Fluoroacetophenone
Which of the ores mentioned in Table 6.1 can be concentrated by magnetic separation method?
Why are pentahalides more covalent than trihalides?
Silver atom has completely filled d orbitals (4d10) in its ground state. How can you say that it is a transition element?
Glucose or sucrose are soluble in water but cyclohexane or benzene (simple six membered ring compounds) are insoluble in water. Explain.
Write structures of the following compounds:
(i) 2-Chloro-3-methylpentane
(ii) 1-Chloro-4-ethylcyclohexane
(iii) 4-tert. Butyl-3-iodoheptane
(iv) 1,4-Dibromobut-2-ene
(v) 1-Bromo-4-sec. butyl-2-methylbenzene
Classify the following amines as primary, secondary or tertiary:
(i)
(ii)
(iii) (C2H5)2CHNH2
(iv) (C2H5)2NH
Write the structures of products of the following reactions;
(i)
(ii)
(iii)
(iv)
Identify allylic alcohols in the above examples.
How are polymers classified on the basis of structure?
Why is the ester hydrolysis slow in the beginning and becomes faster after sometime?
A first order reaction has a rate constant 1.15 10-3s-1. How long will 5 g of this reactant take to reduce to 3 g?
Copper can be extracted by hydrometallurgy but not zinc. Explain.
How does ammonia react with a solution of Cu2+?
Refractive index of a solid is observed to have the same value along all directions. Comment on the nature of this solid. Would it show cleavage property?
How would you account for the irregular variation of ionization enthalpies (first and second) in the first series of the transition elements?