Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
(i) x2 – 2x – 8 (ii) 4s2 – 4s + 1 (iii) 6x2 – 3 – 7x (iv) 4u2 + 8u (v) t2 – 15 (vi) 3x2 – x – 4
(i) x2 – 2x – 8
= x – 4x + 2x – 8
= x(x – 4) + 2(x – 4)
= (x + 2) (x – 4)
The value of x2 – 2x – 8 is zero if (x + 2) = 0 and (x – 4) = 0
x = -2 or x = 4
Sum of zeroes = (-2 + 4) = 2 = - coefficient of x
coefficient of x2
Product of zeroes = (-2) × 4 = -8 = Constant term
coefficient of x2
(ii) 4s2 – 4s + 1
= 4s2 – 2s – 2s + 1
= 2s (2s – 1) – 1 (2s – 1)
= ( 2s – 1 ) ( 2s – 1 )
The value of 4s2 – 4s + 1 is zero , if (2s-1) = 0 and (2s-1 ) = 0
s = 1/2 , 1/2
Sum of zeroes = (1/2 + 1/2) = 1 - coefficient of x
coefficient of x2
Product of zeroes =1/2 × 1/2 = 1/4 = constant term
coefficient of x2
(iii) 6x2 –7x – 3
= 6x – 9x + 2x – 3
= 3x (2x – 3) + 1(2x – 3)
= (3x + 1) (2x – 3)
The value of 6x2 –7x – 3 is zero, if (3x + 1) = 0 and (2x – 3) = 0
X = -1 /3 , 3/2
Sum of zeroes = ( -1/3 + 3/2) = 7/6 = - coefficient of x
coefficient of x2
Product of zeroes = -1/3 × 3/2 = -3/2 = constant term
coefficient of x2
(iv) 4u2+8u
4u(u+2)
The value of 4u2+8u is zero, if 4u = 0 and (u+2) =0
u = 0, - 2
Sum of zeroes = ( 0+ (-2)) = -2 = - coefficient of x
coefficient of x2
Product of zeroes = (-2) × 0 = 0 = constant term
coefficient of x2
(v)
(vi)
3x2–x–4
3x – 4x + 3x – 4
= x (3x – 4) + 1 (3x – 4)
The value of 3x – x + 4 is zero, if (3x – 4) = 0 and (x + 1) = 0
Sum of zeroes = [4/3 + ( -1)] = 1/3 = - coefficient of x
coefficient of x2
Product of zeroes = (-1) × 4/3 = -4/3 = constant term
coefficient of x2
Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.
Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:
(i) t2 – 3, 2t4 + 3t3 – 2t2 – 9t – 12
(ii) x2 + 3x + 1, 3x4 + 5x3 – 7x2 + 2x + 2
(iii) x3 – 3x + 1, x5 – 4x3 + x2 + 3x + 1
Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following :
(i) p(x) = x3 – 3x2 + 5x – 3, g(x) = x2 – 2 (ii) p(x) = x4 – 3x2 + 4x + 5, g(x) = x2 + 1 – x (iii) p(x) = x4 – 5x + 6, g(x) = 2 – x2
On dividing x3 – 3x2 + x + 2 by a polynomial g(x), the quotient and remainder were x – 2 nd –2x + 4, respectively. Find g(x).
Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, –7, –14 respectively.
Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:
Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and
(i) deg p(x) = deg q(x) (ii) deg q(x) = deg r(x) (iii) deg r(x) = 0
Obtain all other zeroes of 3x4 + 6x3 – 2x2 – 10x – 5, if two of its zeroes are
Use Euclid’s division algorithm to find the HCF of :
(i) 135 and 225 (ii) 196 and 38220 (iii) 867 and 255
A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30° (see Fig. 9.11).
Aftab tells his daughter, “Seven years ago, I was seven times as old as you were then. Also, three years from now, I shall be three times as old as you will be.” (Isn’t this interesting?) Represent this situation algebraically and graphically.
Complete the following statements:
(i) Probability of an event E + Probability of the event ‘not E’ = .
(ii) The probability of an event that cannot happen is . Such an event is called .
(iii) The probability of an event that is certain to happen is . Such an event is called .
(iv) The sum of the probabilities of all the elementary events of an experiment is .
(v) The probability of an event is greater than or equal to and less than or equal to .
Check whether the following are quadratic equations :
(i) (x + 1)2 = 2(x – 3) (ii) x2 – 2x = (–2) (3 – x) (iii) (x – 2)(x + 1) = (x – 1)(x + 3) (iv) (x – 3)(2x +1) = x(x + 5)
(v) (2x – 1)(x – 3) = (x + 5)(x – 1) (vi) x2+ 3x + 1 = (x – 2)2 (vii) (x + 2)3 = 2x (x2 – 1) (viii) x3 – 4x2 – x + 1 = (x – 2)3
How many tangents can a circle have?
Show that any positive odd integer is of the form 6q + 1, or 6q + 3, or 6q + 5, where q is some integer.
A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree.
The coach of a cricket team buys 3 bats and 6 balls for ` 3900. Later, she buys another bat and 3 more balls of the same kind for ` 1300. Represent this situation algebraically and geometrically.
Which of the following experiments have equally likely outcomes? Explain.
(i) A driver attempts to start a car. The car starts or does not start.
(ii) A player attempts to shoot a basketball. She/he shoots or misses the shot.
(iii) A trial is made to answer a true-false question. The answer is right or wrong.
(iv) A baby is born. It is a boy or a girl.
Sum of the areas of two squares is 468 m2. If the difference of their perimeters is 24 m, ind the sides of the two squares.
A game consists of tossing a one rupee coin 3 times and noting its outcome each time. Hanif wins if all the tosses give the same result i.e., three heads or three tails, and loses otherwise. Calculate the probability that Hanif will lose the game.
Use Euclid’s division lemma to show that the square of any positive integer is either of the form 3m or 3m + 1 for some integer m.
[Hint : Let x be any positive integer then it is of the form 3q, 3q + 1 or 3q + 2. Now square each of these and show that they can be rewritten in the form 3m or 3m + 1.]
A box contains 12 balls out of which x are black. If one ball is drawn at random from the box, what is the probability that it will be a black ball?
If 6 more black balls are put in the box, the probability of drawing a black ball is now double of what it was before. Find x.
Form the pair of linear equations for the following problems and find their solution by substitution method.
(i) The difference between two numbers is 26 and one number is three times the other. Find them.
(ii) The larger of two supplementary angles exceeds the smaller by 18 degrees. Find them.
(iii) The coach of a cricket team buys 7 bats and 6 balls for Rs. 3800. Later, she buys 3 bats and 5 balls for Rs. 1750. Find the cost of each bat and each ball.
(iv) The taxi charges in a city consist of a fixed charge together with the charge for the distance covered. For a distance of 10 km, the charge paid is Rs. 105 and for a journey of 15 km, the charge paid is Rs. 155. What are the fixed charges and the charge per km? How much does a person have to pay for travelling a distance of 25 km?
(v) A fraction becomes, , if 2 is added to both the numerator and the denominator. If, 3 is added to both the numerator and the denominator it becomes
Find the fraction.
(vi) Five years hence, the age of Jacob will be three times that of his son. Five years ago, Jacob’s age was seven times that of his son. What are their present ages?
Given that HCF (306, 657) = 9, find LCM (306, 657).
One card is drawn from a well-shuffled deck of 52 cards. Find the probability of getting
(i) a king of red colour (ii) a face card (iii) a red face card
(iv) the jack of hearts (v) a spade (vi) the queen of diamonds
Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.
A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree.
The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 50 m high, find the height of the building.