Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
(i) x2 – 2x – 8 (ii) 4s2 – 4s + 1 (iii) 6x2 – 3 – 7x (iv) 4u2 + 8u (v) t2 – 15 (vi) 3x2 – x – 4
(i) x2 – 2x – 8
= x – 4x + 2x – 8
= x(x – 4) + 2(x – 4)
= (x + 2) (x – 4)
The value of x2 – 2x – 8 is zero if (x + 2) = 0 and (x – 4) = 0
x = -2 or x = 4
Sum of zeroes = (-2 + 4) = 2 = - coefficient of x
coefficient of x2
Product of zeroes = (-2) × 4 = -8 = Constant term
coefficient of x2
(ii) 4s2 – 4s + 1
= 4s2 – 2s – 2s + 1
= 2s (2s – 1) – 1 (2s – 1)
= ( 2s – 1 ) ( 2s – 1 )
The value of 4s2 – 4s + 1 is zero , if (2s-1) = 0 and (2s-1 ) = 0
s = 1/2 , 1/2
Sum of zeroes = (1/2 + 1/2) = 1 - coefficient of x
coefficient of x2
Product of zeroes =1/2 × 1/2 = 1/4 = constant term
coefficient of x2
(iii) 6x2 –7x – 3
= 6x – 9x + 2x – 3
= 3x (2x – 3) + 1(2x – 3)
= (3x + 1) (2x – 3)
The value of 6x2 –7x – 3 is zero, if (3x + 1) = 0 and (2x – 3) = 0
X = -1 /3 , 3/2
Sum of zeroes = ( -1/3 + 3/2) = 7/6 = - coefficient of x
coefficient of x2
Product of zeroes = -1/3 × 3/2 = -3/2 = constant term
coefficient of x2
(iv) 4u2+8u
4u(u+2)
The value of 4u2+8u is zero, if 4u = 0 and (u+2) =0
u = 0, - 2
Sum of zeroes = ( 0+ (-2)) = -2 = - coefficient of x
coefficient of x2
Product of zeroes = (-2) × 0 = 0 = constant term
coefficient of x2
(v)
(vi)
3x2–x–4
3x – 4x + 3x – 4
= x (3x – 4) + 1 (3x – 4)
The value of 3x – x + 4 is zero, if (3x – 4) = 0 and (x + 1) = 0
Sum of zeroes = [4/3 + ( -1)] = 1/3 = - coefficient of x
coefficient of x2
Product of zeroes = (-1) × 4/3 = -4/3 = constant term
coefficient of x2
Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.
Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:
(i) t2 – 3, 2t4 + 3t3 – 2t2 – 9t – 12
(ii) x2 + 3x + 1, 3x4 + 5x3 – 7x2 + 2x + 2
(iii) x3 – 3x + 1, x5 – 4x3 + x2 + 3x + 1
Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following :
(i) p(x) = x3 – 3x2 + 5x – 3, g(x) = x2 – 2 (ii) p(x) = x4 – 3x2 + 4x + 5, g(x) = x2 + 1 – x (iii) p(x) = x4 – 5x + 6, g(x) = 2 – x2
On dividing x3 – 3x2 + x + 2 by a polynomial g(x), the quotient and remainder were x – 2 nd –2x + 4, respectively. Find g(x).
Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, –7, –14 respectively.
Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:
Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and
(i) deg p(x) = deg q(x) (ii) deg q(x) = deg r(x) (iii) deg r(x) = 0
Obtain all other zeroes of 3x4 + 6x3 – 2x2 – 10x – 5, if two of its zeroes are
Use Euclid’s division algorithm to find the HCF of :
(i) 135 and 225 (ii) 196 and 38220 (iii) 867 and 255
A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30° (see Fig. 9.11).
Aftab tells his daughter, “Seven years ago, I was seven times as old as you were then. Also, three years from now, I shall be three times as old as you will be.” (Isn’t this interesting?) Represent this situation algebraically and graphically.
Complete the following statements:
(i) Probability of an event E + Probability of the event ‘not E’ = .
(ii) The probability of an event that cannot happen is . Such an event is called .
(iii) The probability of an event that is certain to happen is . Such an event is called .
(iv) The sum of the probabilities of all the elementary events of an experiment is .
(v) The probability of an event is greater than or equal to and less than or equal to .
Check whether the following are quadratic equations :
(i) (x + 1)2 = 2(x – 3) (ii) x2 – 2x = (–2) (3 – x) (iii) (x – 2)(x + 1) = (x – 1)(x + 3) (iv) (x – 3)(2x +1) = x(x + 5)
(v) (2x – 1)(x – 3) = (x + 5)(x – 1) (vi) x2+ 3x + 1 = (x – 2)2 (vii) (x + 2)3 = 2x (x2 – 1) (viii) x3 – 4x2 – x + 1 = (x – 2)3
How many tangents can a circle have?
Show that any positive odd integer is of the form 6q + 1, or 6q + 3, or 6q + 5, where q is some integer.
A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree.
The coach of a cricket team buys 3 bats and 6 balls for ` 3900. Later, she buys another bat and 3 more balls of the same kind for ` 1300. Represent this situation algebraically and geometrically.
Which of the following experiments have equally likely outcomes? Explain.
(i) A driver attempts to start a car. The car starts or does not start.
(ii) A player attempts to shoot a basketball. She/he shoots or misses the shot.
(iii) A trial is made to answer a true-false question. The answer is right or wrong.
(iv) A baby is born. It is a boy or a girl.
Draw the graphs of the equations x – y + 1 = 0 and 3x + 2y – 12 = 0. Determine the coordinates of the vertices of the triangle formed by these lines and the x-axis, and shade the triangular region.
The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, find the other two sides.
Find the nature of the roots of the following quadratic equations. If the real roots exist, find them:
(i) 2x2 – 3x + 5 = 0 (iii) 2x2– 6x + 3 = 0
The cost of 2 kg of apples and 1kg of grapes on a day was found to be ` 160. After a month, the cost of 4 kg of apples and 2 kg of grapes is ` 300. Represent the situation algebraically and geometrically.
Solve 2x + 3y = 11 and 2x – 4y = – 24 and hence find the value of ‘m’ for which y = mx + 3.
Why is tossing a coin considered to be a fair way of deciding which team should get the ball at the beginning of a football game?
Given the linear equation 2x + 3y – 8 = 0, write another linear equation in two variables such that the geometrical representation of the pair so formed is:
(i) intersecting lines (ii) parallel lines (iii) coincident lines
Prove that the tangents drawn at the ends of a diameter of a circle are parallel.
A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree.
A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30°, which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60°. Find the time taken by the car to reach the foot of the tower from this point.