At Saralstudy, we are providing you with the solution of Class 10 Mathematics Quadratic Equations according to the latest NCERT (CBSE) Book guidelines prepared by expert teachers. Here we are trying to give you a detailed answer to the questions of the entire topic of this chapter so that you can get more marks in your examinations by preparing the answers based on this lesson. We are trying our best to give you detailed answers to all the questions of all the topics of Class 10th mathematics Quadratic Equations so that you can prepare for the exam according to your own pace and your speed.

Download pdf of NCERT Solutions for Class Mathematics Chapter 4 Quadratic Equations

Download pdf of NCERT Examplar with Solutions for Class Mathematics Chapter 4 Quadratic Equations

- Q:-
Find the LCM and HCF of the following pairs of integers and verify that LCM × HCF = product of the two numbers.

(i) 26 and 91 (ii) 510 and 92 (iii) 336 and 54 - Q:-
Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

- Q:-
Prove that 3 + 2√5 is irrational.

- Q:-
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

(i) x

^{2}– 2x – 8 (ii) 4s^{2}– 4s + 1 (iii) 6x^{2}– 3 – 7x (iv) 4u^{2}+ 8u (v) t^{2 }– 15 (vi) 3x^{2 }– x – 4 - Q:-
The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

- Q:-
Find two consecutive positive integers, sum of whose squares is 365.

- Q:-
A cottage industry produces a certain number of pottery articles in a day. It was observed on a particular day that the cost of production of each article (in rupees) was 3 more than twice the number of articles produced on that day. If the total cost of production on that day was Rs 90, find the number of articles produced and the cost of each article.

- Q:-
Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:

(i) t^{2}– 3, 2t^{4}+ 3t^{3}– 2t^{2}– 9t – 12(ii) x

^{2}+ 3x + 1, 3x^{4}+ 5x^{3}– 7x^{2}+ 2x + 2(iii) x

^{3}– 3x + 1, x^{5}– 4x^{3}+ x^{2}+ 3x + 1 - Q:-
Given that HCF (306, 657) = 9, find LCM (306, 657).

- Q:-