• NCERT Chapter
Question 7

# In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.(i) f : R → R defined by f(x) = 3 – 4x(ii) f : R → R defined by f(x) = 1 + x2

(i) f: R → R is defined as f(x) = 3 - 4x.

.

∴ f is one-one.

For any real number (y) in R, there existsin R such that

f is onto.

Hence, f is bijective.

(ii) f: R → R is defined as

.

.

does not imply that x1 = x2

For instance,

∴ f is not one-one.

Consider an element - 2 in co-domain R.

It is seen thatis positive for all x ∈ R.

Thus, there does not exist any x in domain R such that f(x) = - 2.

∴ f is not onto.

Hence, f is neither one-one nor onto.

">

Let A = R – {3} and B = R – {1}. Consider the function  f : A → B defined by

• Q:- Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
• Q:-

Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.

• Q:- Show that the relation R in the set A = {1, 2, 3, 4, 5} given by R = { (a,b) ; |a - b| is even}, is an equivalence relation. Show that all the elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of {2, 4}.
• Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b2} is neither reflexive nor symmetric nor transitive.
• Q:-

Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.

• ## Recently Viewed Questions of Class 12th mathematics

">

Let A = R – {3} and B = R – {1}. Consider the function  f : A → B defined by