- NCERT Chapter

Question 13

If f: R → R be given by f(x) = _{}, then fof(x) is

(A) _{}

(B) x^{3}

(C) x

(D) (3 – x^{3}).

Answer

: **R** → **R** is given as.

The correct answer is C.

- Q:- Given an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive. - Q:- Show that each of the relation R in the set A = { x ∈Z: 0≤x≤12}, A={x} given by

(i) R = { (a,b) : |a - b| is a multiple of 4}

(ii) R = {(a,b):a = b} is an equivalence relation.

Find the set of all elements related to 1 in each case. - Q:- Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y} - Q:-
Check the injectivity and surjectivity of the following functions:

(i)

*f*:**N → N**given by*f(x*) = x^{2}(ii)

*f*:**Z → Z**given by*f(x)*= x^{2}(iii)

*f*:**R → R**given by*f(x)*= x^{2}(iv)

*f*:**N → N**given by*f(x)*= x^{3}(v)

*f*:**Z → Z**given by*f(x)*= x^{3 } - Q:- . Is f one-one and onto? Justify your answer.

">

Let A = R – {3} and B = R – {1}. Consider the function *f* : A → B defined by

. Is f one-one and onto? Justify your answer.

Prove that the Greatest Integer Function* f* : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.

Show that the Modulus Function *f* : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.

- Q:-

State whether the function*f*is bijective. Justify your answer.Let

*f*: N → N be defined by

State whether the function*f*is bijective. Justify your answer. - Q:- Show that each of the relation R in the set A = { x ∈Z: 0≤x≤12}, A={x} given by

(i) R = { (a,b) : |a - b| is a multiple of 4}

(ii) R = {(a,b):a = b} is an equivalence relation.

Find the set of all elements related to 1 in each case. - Q:- Show that the relation R in the set A = {1, 2, 3, 4, 5} given by R = { (a,b) ; |a - b| is even}, is an equivalence relation. Show that all the elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of {2, 4}.
- Q:- Find values of x, if (i) \(\begin{vmatrix}2 & 4\\2 & 1\end{vmatrix}\) = \(\begin{vmatrix}2x & 4\\6 & x\end{vmatrix}\) (ii) \(\begin{vmatrix}2 & 3\\4 & 5\end{vmatrix}\) = \(\begin{vmatrix}x & 3\\2x & 5\end{vmatrix}\)
- Q:- Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y} - Q:- . Is f one-one and onto? Justify your answer.

">

Let A = R – {3} and B = R – {1}. Consider the function *f* : A → B defined by

. Is f one-one and onto? Justify your answer.

Check the injectivity and surjectivity of the following functions:

(i)* f* : **N → N** given by* f(x*) = x^{2}

(ii)* f* : **Z → Z** given by *f(x)* = x^{2}

(iii)* f* : **R → R** given by* f(x)* = x^{2}

(iv)* f *: **N → N** given by *f(x)* = x^{3}

(v)* f* : **Z → Z** given by *f(x)* = x^{3 }

The length *x* of a rectangle is decreasing at the rate of 5 cm/minute and the width *y* is increasing at the rate of 4 cm/minute. When *x* = 8 cm and *y* = 6 cm, find the rates of change of (a) the perimeter, and (b) the area of the rectangle.