Question 4

In Figure, identify the following vectors.

(i) Coinitial (ii) Equal (iii) Collinear but not equal

Answer

\begin{align} (i) \;Vectors\; \overrightarrow{a}\; and\; \overrightarrow{d}\; are \;coinitial\; because\; they\; have\; the\; same \;initial \;point. \end{align}

\begin{align}(ii)\; Vectors\;\overrightarrow{b} \;and\;\overrightarrow{d}\; are\; equal\; because\; they\; have\; the\; same \;magnitude \;and\; direction. \end{align}

\begin{align}(iii)\; Vectors\;\overrightarrow{a} \;and\; \overrightarrow{c} \;are\; collinear\; but\; not\; equal\;. This\; is\; because\; although\; they\; are \;parallel,\; their\; directions\; are\; not \;the\; same.\end{align}

- Q:- Given an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive. - Q:- Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y} - Q:- Show that each of the relation R in the set A = { x ∈Z: 0≤x≤12}, A={x} given by

(i) R = { (a,b) : |a - b| is a multiple of 4}

(ii) R = {(a,b):a = b} is an equivalence relation.

Find the set of all elements related to 1 in each case. - Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b
^{2}} is neither reflexive nor symmetric nor transitive. - Q:- Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
- Q:-
Prove that the Greatest Integer Function

*f*: R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x. - Q:-
Check the injectivity and surjectivity of the following functions:

(i)

*f*:**N → N**given by*f(x*) = x^{2}(ii)

*f*:**Z → Z**given by*f(x)*= x^{2}(iii)

*f*:**R → R**given by*f(x)*= x^{2}(iv)

*f*:**N → N**given by*f(x)*= x^{3}(v)

*f*:**Z → Z**given by*f(x)*= x^{3 } - Q:- If a matrix has 24 elements, what are the possible order it can have? What, if it has 13 elements?
- Q:- Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.
- Q:-
Show that the Modulus Function

*f*: R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.

- Q:-
Check the injectivity and surjectivity of the following functions:

(i)

*f*:**N → N**given by*f(x*) = x^{2}(ii)

*f*:**Z → Z**given by*f(x)*= x^{2}(iii)

*f*:**R → R**given by*f(x)*= x^{2}(iv)

*f*:**N → N**given by*f(x)*= x^{3}(v)

*f*:**Z → Z**given by*f(x)*= x^{3 } - Q:- Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
- Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b
^{2}} is neither reflexive nor symmetric nor transitive. - Q:- The anti derivative of \begin{align} \left(\sqrt x + \frac {1}{\sqrt x}\right)\end{align} equals to \begin{align} (A) \frac{1}{3}.x^\frac{1}{3} + 2.x^\frac{1}{2} +C \;\;\;\; (B) \frac{2}{3}.x^\frac{2}{3} + \frac{1}{2}.x^2 +C \end{align}

\begin{align} (C) \frac{2}{3}.x^\frac{3}{2} +2 x^\frac{1}{2} +C \;\;\;\;(D) \frac{3}{2}.x^\frac{3}{2} +\frac{1}{2}. x^\frac{1}{2} +C \end{align} - Q:- Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.
- Q:- Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Choose the correct answer.

(A) R is reflexive and symmetric but not transitive.

(B) R is reflexive and transitive but not symmetric.

(C) R is symmetric and transitive but not reflexive.

(D) R is an equivalence relation. - Q:- Let R be the relation in the set N given by R = {(a, b): a = b − 2, b > 6}. Choose the correct answer.

(A) (2, 4) ∈ R

(B) (3, 8) ∈R

(C) (6, 8) ∈R

(D) (8, 7) ∈ R - Q:-
Show that the Modulus Function

*f*: R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative. - Q:- \begin{align} \int \left({a}{x^2} + bx + c\right) .dx\end{align}
- Q:- If a matrix has 24 elements, what are the possible order it can have? What, if it has 13 elements?

- NCERT Chapter

Copyright © 2020 saralstudy.com. All Rights Reserved.