In Figure, identify the following vectors.
(i) Coinitial (ii) Equal (iii) Collinear but not equal
\begin{align} (i) \;Vectors\; \overrightarrow{a}\; and\; \overrightarrow{d}\; are \;coinitial\; because\; they\; have\; the\; same \;initial \;point. \end{align}
\begin{align}(ii)\; Vectors\;\overrightarrow{b} \;and\;\overrightarrow{d}\; are\; equal\; because\; they\; have\; the\; same \;magnitude \;and\; direction. \end{align}
\begin{align}(iii)\; Vectors\;\overrightarrow{a} \;and\; \overrightarrow{c} \;are\; collinear\; but\; not\; equal\;. This\; is\; because\; although\; they\; are \;parallel,\; their\; directions\; are\; not \;the\; same.\end{align}
Answer the following as true or false.
\begin{align}(i) \overrightarrow{a}\; and\; \overrightarrow{-a}\; are\; collinear.\end{align}
(ii) Two collinear vectors are always equal in magnitude.
(iii) Two vectors having same magnitude are collinear.
(iv) Two collinear vectors having the same magnitude are equal.
Classify the following measures as scalars and vectors.
(i) 10 kg (ii) 2 metres north-west (iii) 40°
(iv) 40 watt (v) 10–19 coulomb (vi) 20 m/s2
Classify the following as scalar and vector quantities.
(i) time period (ii) distance (iii) force
(iv) velocity (v) work done
Represent graphically a displacement of 40 km, 30° east of north.
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
The total cost C (x) in Rupees associated with the production of x units of an item is given by
C(X) = 0.007 x3 - 0.003x2 + 15x + 4000
Find the marginal cost when 17 units are produced.