In Figure, identify the following vectors.
(i) Coinitial (ii) Equal (iii) Collinear but not equal
\begin{align} (i) \;Vectors\; \overrightarrow{a}\; and\; \overrightarrow{d}\; are \;coinitial\; because\; they\; have\; the\; same \;initial \;point. \end{align}
\begin{align}(ii)\; Vectors\;\overrightarrow{b} \;and\;\overrightarrow{d}\; are\; equal\; because\; they\; have\; the\; same \;magnitude \;and\; direction. \end{align}
\begin{align}(iii)\; Vectors\;\overrightarrow{a} \;and\; \overrightarrow{c} \;are\; collinear\; but\; not\; equal\;. This\; is\; because\; although\; they\; are \;parallel,\; their\; directions\; are\; not \;the\; same.\end{align}
Answer the following as true or false.
\begin{align}(i) \overrightarrow{a}\; and\; \overrightarrow{-a}\; are\; collinear.\end{align}
(ii) Two collinear vectors are always equal in magnitude.
(iii) Two vectors having same magnitude are collinear.
(iv) Two collinear vectors having the same magnitude are equal.
Classify the following measures as scalars and vectors.
(i) 10 kg (ii) 2 metres north-west (iii) 40°
(iv) 40 watt (v) 10–19 coulomb (vi) 20 m/s2
Classify the following as scalar and vector quantities.
(i) time period (ii) distance (iii) force
(iv) velocity (v) work done
Represent graphically a displacement of 40 km, 30° east of north.
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.
An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long?
A stone is dropped into a quiet lake and waves move in circles at the speed of 5 cm/s. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing?
Determine order and degree(if defined) of differential equation y' + 5y = 0
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Determine order and degree(if defined) of differential equation yn + (y')2 + 2y =0