This page offers a step-by-step solution to the specific question **NCERT Class 10th Mathematics - Probability | why is tossing a coin considered to be a fair way Answer ** from NCERT Class 10th Mathematics, Chapter Probability.

Question 3

Why is tossing a coin considered to be a fair way of deciding which team should get the ball at the beginning of a football game?

Answer

Because the outcomes of a coin head or tail are equally likely. So, this is the fair way to decide which team get the ball at the beginning.

- Q:-
Refer to Example 13. (i) Complete the following table:

(ii) A student argues that ‘there are 11 possible outcomes 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. Therefore, each of them has a probability

Do you agree with this argument? Justify your answer.

- Q:-
A jar contains 24 marbles, some are green and others are blue. If a marble is drawn at random from the jar, the probability that it is green is 2/3.

Find the number of blue balls in the jar.

- Q:-
A piggy bank contains hundred 50p coins, fifty Rs 1 coins, twenty Rs 2 coins and ten Rs 5 coins. If it is equally likely that one of the coins will fall out when the bank is turned upside down, what is the probability that the coin (i) will be a 50 p coin ? (ii) will not be Rs 5 coin?

- Q:-
A bag contains 5 red balls and some blue balls. If the probability of drawing a blue ball is double that of a red ball, determine the number of blue balls in the bag.

- Q:-
A die is thrown twice. What is the probability that

(i) 5 will not come up either time? (ii) 5 will come up at least once?

[Hint : Throwing a die twice and throwing two dice simultaneously are treated as the same experiment] - Q:-
Which of the following experiments have equally likely outcomes? Explain.

(i) A driver attempts to start a car. The car starts or does not start.

(ii) A player attempts to shoot a basketball. She/he shoots or misses the shot.

(iii) A trial is made to answer a true-false question. The answer is right or wrong.

(iv) A baby is born. It is a boy or a girl. - Q:-
A die is thrown once. Find the probability of getting

(i) a prime number; (ii) a number lying between 2 and 6; (iii) an odd number. - Q:-
A bag contains lemon flavoured candies only. Malini takes out one candy without looking into the bag. What is the probability that she takes out

(i) an orange flavoured candy?

(ii) a lemon flavoured candy? - Q:-
A box contains 5 red marbles, 8 white marbles and 4 green marbles. One marble is taken out of the box at random. What is the probability that the marble taken out will be (i) red ? (ii) white ? (iii) not green?

- Q:-
Complete the following statements:

(i) Probability of an event E + Probability of the event ‘not E’ =

(ii) The probability of an event that cannot happen is

(iii) The probability of an event that is certain to happen is

(iv) The sum of the probabilities of all the elementary events of an experiment is(v) The probability of an event is greater than or equal to

- Q:-
Use Euclid’s division algorithm to find the HCF of :

(i) 135 and 225 (ii) 196 and 38220 (iii) 867 and 255 - Q:-
The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

- Q:-
A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30° (see Fig. 9.11).

- Q:-
Aftab tells his daughter, “Seven years ago, I was seven times as old as you were then. Also, three years from now, I shall be three times as old as you will be.” (Isn’t this interesting?) Represent this situation algebraically and graphically.

- Q:-
Check whether the following are quadratic equations :

(i) (x + 1)^{2}= 2(x – 3) (ii) x^{2}– 2x = (–2) (3 – x) (iii) (x – 2)(x + 1) = (x – 1)(x + 3) (iv) (x – 3)(2x +1) = x(x + 5)(v) (2x – 1)(x – 3) = (x + 5)(x – 1) (vi) x

^{2}+ 3x + 1 = (x – 2)^{2}(vii) (x + 2)^{3}= 2x (x2 – 1) (viii) x^{3}– 4x^{2}– x + 1 = (x – 2)^{3} - Q:-
How many tangents can a circle have?

- Q:-
Show that any positive odd integer is of the form 6

*q*+ 1, or 6*q*+ 3, or 6*q*+ 5, where*q*is some integer. - Q:-
A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree.

- Q:-
The coach of a cricket team buys 3 bats and 6 balls for ` 3900. Later, she buys another bat and 3 more balls of the same kind for ` 1300. Represent this situation algebraically and geometrically.

- Q:-
Represent the following situations in the form of quadratic equations :

(i) The area of a rectangular plot is 528 m^{2}. The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot.(ii) The product of two consecutive positive integers is 306. We need to find the integers.

(iii) Rohan’s mother is 26 years older than him. The product of their ages (in years) 3 years from now will be 360. We would like to find Rohan’s present age.

(iv) A train travels a distance of 480 km at a uniform speed. If the speed had been 8 km/h less, then it would have taken 3 hours more to cover the same distance. We need to find the speed of the train.

- Q:-
The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is 6 m.

- Q:-
An express train takes 1 hour less than a passenger train to travel 132 km between Mysore and Bangalore (without taking into consideration the time they stop at intermediate stations). If the average speed of the express train is 11km/h more than that of the passenger train, find the average speed of the two trains.

- Q:-
Prove that the parallelogram circumscribing a circle is a rhombus.

- Q:-
A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30° (see Fig. 9.11).

- Q:-
A contractor plans to install two slides for the children to play in a park. For the children below the age of 5 years, she prefers to have a slide whose top is at a height of 1.5 m, andis inclined at an angle of 30° to the ground, whereas for elder children, she wants to have a steep slide at a height of 3m, and inclined at an angle of 60° to the ground. What should be the length of the slide in each case?

- Q:-
In a class test, the sum of Shefali’s marks in Mathematics and English is 30. Had she got 2 marks more in Mathematics and 3 marks less in English, the product of their marks would have been 210. Find her marks in the two subjects.

- Q:-
In Fig. 10.11, if TP and TQ are the two tangents to a circle with centre O so that ∠ POQ = 110°, then ∠ PTQ is equal to

(A) 60° (B) 70°

(C) 80° (D) 90° - Q:-
A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that OQ = 12 cm. Length PQ is:

- Q:-
From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. The radius of the circle is

(A) 7 cm (B) 12 cm

(C) 15 cm (D) 24.5 cm - Q:-
Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

- All Chapters Of Class 10 Mathematics

- All Subjects Of Class 10