Write the resonance structures for SO3, NO2 and .
Resonance is defined as the phenomenon as a result of which a molecule can be expressed in different forms, none of which can explain all the properties of the molecules. The actual structure of the molecule is called resonance hybrid.
The resonating structures must have same position of the atoms, they must have same number of paired & unpaired electrons, they should have nearlt same energy. The resonance structures are:
(a) SO3:
(b) NO2
(c)
What is meant by the term bond order? Calculate the bond order of: N2, O2,O2+,and O2-.
Use molecular orbital theory to explain why the Be2 molecule does not exist.
Explain the formation of H2 molecule on the basis of valence bond theory.
Compare the relative stability of the following species and indicate their magnetic properties:
O2,O2+,O2- (superoxide), O22-(peroxide)
Describe the hybridisation in case of PCl5. Why are the axial bonds longer as compared to equatorial bonds?
Which out of NH3 and NF3 has higher dipole moment and why?
Explain why BeH2 molecule has a zero dipole moment although the Be–H bonds are polar.
Discuss the shape of the following molecules using the VSEPR model:
BeCl2, BCl3, SiCl4, AsF5, H2S, PH3
Write Lewis symbols for the following atoms and ions:
S and S2–; Al and Al3+; H and H–
Describe the change in hybridisation (if any) of the Al atom in the following reaction.
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
Identify the functional groups in the following compounds
Draw formulas for the first five members of each homologous series beginning with the following compounds.
(a) H-COOH
(b) CH3COCH3
(c) H-CH=CH2
Explain the terms Inductive and Electromeric effects. Which electron displacement effect explains the following correct orders of acidity of the carboxylic acids?
(a) Cl3CCOOH > Cl2CHCOOH > ClCH2COOH
(b) CH3CH2COOH > (CH3)2CHCOOH > (CH3)3C.COOH
The enthalpies of all elements in their standard states are:
(i) unity
(ii) zero
(iii) < 0
(iv) different for each element
How much energy is required to ionise a H atom if the electron occupies n = 5 orbit? Compare your answer with the ionization enthalpy of H atom (energy required to remove the electron from n =1 orbit).
Calculate the amount of carbon dioxide that could be produced when
(i) 1 mole of carbon is burnt in air.
(ii) 1 mole of carbon is burnt in 16 g of dioxygen.
(iii) 2 moles of carbon are burnt in 16 g of dioxygen.
Why is nitric acid added to sodium extract before adding silver nitrate for testing halogens?
Calculate a) ΔG0 and b) the equilibrium constant for the formation of NO2 from NO and O2 at 298K
NO (g) + ½ O2 (g) ↔ NO2 (g)
where ΔfG0 (NO2) = 52.0 kJ/mol
ΔfG0 (NO) = 87.0 kJ/mol
ΔfG0 (O2) = 0 kJ/mol
The value of Kc for the reaction
3O2 (g) ↔ 2O3 (g) is 2.0 ×10–50 at 25°C.
If the equilibrium concentration of O2 in air at 25°C is 1.6 ×10–2, what is the concentration of O3?
Identify the substance oxidised, reduced, oxidising agent and reducing agent for each of the following reactions:
(a) 2AgBr (s) + C6H6O2(aq) → 2Ag(s) + 2HBr (aq) + C6H4O2(aq)
(b) HCHO(l) + 2[Ag (NH3)2]+(aq) + 3OH-(aq) → 2Ag(s) + HCOO-(aq) + 4NH3(aq) + 2H2O(l)
(c) HCHO (l) + 2Cu2+(aq) + 5 OH-(aq) → Cu2O(s) + HCOO-(aq) + 3H2O(l)
(d) N2H4(l) + 2H2O2(l) → N2(g) + 4H2O(l)
(e) Pb(s) + PbO2(s) + 2H2SO4(aq) → 2PbSO4(s) + 2H2O(l)
Really, the way of telling the answer is very nice
Nice
Very useful and nice answer
Very disscasting website Very poor results I am not satisfied
this is really good