A travelling harmonic wave on a string is described by
y(x,t) = 7.5sin [0.0050x + 12t + π/4]
(a) What are the displacement and velocity of oscillation of a point at x = 1 cm, and t = 1 s? Is this velocity equal to the velocity of wave propagation?
(b) Locate the points of the string which have the same transverse displacements and velocity as the x = 1 cm point at t = 2 s, 5 s and 11 s.
(a) The given harmonic wave is:
y(x,t) = 7.5sin [0.0050x + 12t + π/4]
For x = 1 cm and t = 1s,
y = (1, 1) = 7.5sin [0.0050 + 12 + π/4]
.= 7.5sin [12.0050 + π/4]
= 7.5 sinθ
Where, θ = 12.0050 + π/4 = 12.0050 + 3.14 / 4 = 12.79 rad
= 180 /3.14 x 12.79 = 732.81°
∴ y = (1, 1) = 7.5sin [732.81°]
= 7.5 sin (90 x 8 + 12.81°)
= 7.5 sin (12.81°)
= 7.5 x 0.2217
= 1.6629 ≈ 1.663 cm
The velocity of the oscillation at a given point and time is given as:
v = d/dt y(x,t) = d/dt [7.5sin(0.0050x + 12t +π/4)]
= 7.5 x 12cos (0.0050x + 12t +π/4)
At x = 1 cm and t = 1s:
v = y(1,1) = 90 cos (12.005 + π/4)
= 90cos(732.81°) = 90cos(90 x 8 + 12.81°)
= 90cos(12.81°)
= 90 x 0.975 = 87.75 cm/s
Now, the equation of a propagating wave is given by:
y(x,t) = a sin(kx + wt + ø)
Where,
k = 2π / λ
∴ λ = 2π / k
And ω = 2πv
∴ v = ω / 2π
Speed = v = vλ = ω / k
Where
ω = 12 rad/s
k = 0.0050 m-1
∴ v = 12 /0.0050 = 2400 cm/s
∴ Hence, the velocity of the wave oscillation at x = 1 cm and t = 1 s is not equal to the velocity of the wave propagation.
(b) Propagation constant is related to wavelength as:
k = 2π / λ
∴ λ = 2π / k = 2 x 3.14 / 0.0050
= 1256 cm = 12.56
Therefore, all the points at distances nλ , (n =±1, ±2....and so on) i.e. ± 12.56 m, ± 25.12 m, … and so on for x = 1 cm, will have the same displacement as the x = 1 cm points at t = 2 s, 5 s, and 11 s.
A transverse harmonic wave on a string is described by
y(x,t) = 3.0 sin [36t + 0.018x + π /4]
Where x and y are in cm and t in s. The positive direction of x is from left to right.
(a) Is this a travelling wave or a stationary wave? If it is travelling, what are the speed and direction of its propagation?
(b) What are its amplitude and frequency?
(c) What is the initial phase at the origin?
(d) What is the least distance between two successive crests in the wave?
Use the formula v = √ γP/ρ to explain why the speed of sound in air (a) is independent of pressure, (b) increases with temperature, (c) increases with humidity.
A narrow sound pulse (for example, a short pip by a whistle) is sent across a medium.
(a) Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propagation?
(b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of second after every 20 s), is the frequency of the note produced by the whistle equal to or 0.05 Hz?
A stone dropped from the top of a tower of height 300 m high splashes into the water of a pond near the base of the tower. When is the splash heard at the top given that the speed of sound in air is 340 m s-1? (g= 9.8 m s-2)
A bat emits ultrasonic sound of frequency 1000 kHz in air. If the sound meets a water surface, what is the wavelength of (a) the reflected sound, (b) the transmitted sound? Speed of sound in air is 340 m s-1 and in water 1486 m s-1.
A steel wire has a length of 12.0 m and a mass of 2.10 kg. What should be the tension in the wire so that speed of a transverse wave on the wire equals the speed of sound in dry air at 20 °C = 343 m s-1.
A pipe 20 cm long is closed at one end. Which harmonic mode of the pipe is resonantly excited by a 430 Hz source? Will the same source be in resonance with the pipe if both ends are open? (Speed of sound in air is 340 m s-1).
For the travelling harmonic wave
y (x, t) = 2.0 cos 2π (10t - 0.0080 x + 0.35)
Where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of
(a) 4 m,
(b) 0.5 m,
(c) λ / 2 ,
(d) 3λ / 4
A SONAR system fixed in a submarine operates at a frequency 40.0 kHz. An enemy submarine moves towards the SONAR with a speed of 360 km h-1. What is the frequency of sound reflected by the submarine? Take the speed of sound in water to be 1450 m s-1.
Some of the most profound statements on the nature of science have come from Albert Einstein, one of the greatest scientists of all time. What do you think did Einstein mean when he said : “The most incomprehensible thing about the world is that it is comprehensible”?
The sign of work done by a force on a body is important to understand. State carefully if the following quantities are positive or negative:
(a) work done by a man in lifting a bucket out of a well by means of a rope tied to the bucket.
(b) work done by gravitational force in the above case,
(c) work done by friction on a body sliding down an inclined plane,
(d) work done by an applied force on a body moving on a rough horizontal plane with uniform velocity,
(e) work done by the resistive force of air on a vibrating pendulum in bringing it to rest.
A geyser heats water flowing at the rate of 3.0 litres per minute from 27 °C to 77 °C. If the geyser operates on a gas burner, what is the rate of consumption of the fuel if its heat of combustion is 4.0 x 104 J/g?
Estimate the fraction of molecular volume to the actual volume occupied by oxygen gas at STP. Take the diameter of an oxygen molecule to be 3Å.
Which of the following relationships between the acceleration a and the displacement x of a particle involve simple harmonic motion?
(a) a = 0.7x
(b) a = -200x2
(c) a = -10x
(d) a = 100x3
A SONAR (sound navigation and ranging) uses ultrasonic waves to detect and locate objects under water. In a submarine equipped with a SONAR the time delay between generation of a probe wave and the reception of its echo after reflection from an enemy submarine is found to be 77.0 s. What is the distance of the enemy submarine? (Speed of sound in water = 1450 m s-1).
Torques of equal magnitude are applied to a hollow cylinder and a solid sphere, both having the same mass and radius. The cylinder is free to rotate about its standard axis of symmetry, and the sphere is free to rotate about an axis passing through its centre. Which of the two will acquire a greater angular speed after a given time?
Explain clearly, with examples, the distinction between:
a) magnitude of displacement (sometimes called distance) over an interval of time, and the total length of path covered by a particle over the same interval;
b) magnitude of average velocity over an interval of time, and the average speed over the same interval. [Average speed of a particle over an interval of time is defined as the total path length divided by the time interval]. Show in both (a) and (b) that the second quantity is either greater than or equal to the first.
When is the equality sign true? [For simplicity, consider one-dimensional motion only].
A vector has magnitude and direction. Does it have a location in space? Can it vary with time? Will two equal vectors a and b at different locations in space necessarily have identical physical effects? Give examples in support of your answer.
In changing the state of a gas adiabatically from an equilibrium state A to another equilibrium state B, an amount of work equal to 22.3 J is done on the system. If the gas is taken from state A to B via a process in which the net heat absorbed by the system is 9.35 cal, how much is the net work done by the system in the latter case? (Take 1 cal = 4.19 J)
Two vessels have the same base area but different shapes. The first vessel takes twice the volume of water that the second vessel requires to fill upto a particular common height. Is the force exerted by the water on the base of the vessel the same in the two cases? If so, why do the vessels filled with water to that same height give different readings on a weighing scale?
It is a well known fact that during a total solar eclipse the disk of the moon almost completely covers the disk of the Sun. From this fact and from the information you can gather from examples 2.3 and 2.4, determine the approximate diameter of the moon.
A pebble of mass 0.05 kg is thrown vertically upwards. Give the direction and magnitude of the net force on the pebble,
(a) during its upward motion,
(b) during its downward motion,
(c) at the highest point where it is momentarily at rest.
Do your answers change if the pebble was thrown at an angle of 45° with the horizontal direction? Ignore air resistance.