Are the answers to the above questions necessarily the same or different? Why?
No. The answers are not the same all the time. This is because the meaning of health varies from person to person. For example, good health for a dancer may be being able to stretch his body into difficult but graceful positions. Good health is the ability of an individual to realise his or her full potential. Individuals can have poor health without having any identifiable disease. Also, health is related to society and community, whereas having a disease is about an individual sick person. Hence, the conditions for good health and for being disease free can be the same or even different.
Abdul, while driving to school, computes the average speed for his trip to be 20 km h-1. On his return trip along the same route, there is less traffic and the average speed is 40 km h-1. What is the average speed for Abdul’s trip?
An object of mass 40 kg is raised to a height of 5 m above the ground. What is its potential energy? If the object is allowed to fall, find its kinetic energy when it is half-way down.
Soni says that the acceleration in an object could be zero even when several forces are acting on it. Do you agree with her? Why?
Fig 8.11 shows the distance-time graph of three objects A,B and C. Study the graph and answer the following questions:
Fig. 8.11
(a) Which of the three is travelling the fastest?
(b) Are all three ever at the same point on the road?
(c) How far has C travelled when B passes A?
(d) How far has B travelled by the time it passes C?
Two objects, each of mass 1.5 kg, are moving in the same straight line but in opposite directions. The velocity of each object is 2.5 m s-1 before the collision during which they stick together. What will be the velocity of the combined object after collision?
A driver of a car travelling at 52 km h-1 applies the brakes and accelerates uniformly in the opposite direction. The car stops in 5 s. Another driver going at 3 km h-1 in another car applies his brakes slowly and stops in 10 s. On the same graph paper, plot the speed versus time graphs for the two cars. Which of the two cars travelled farther after the brakes were applied?
How do poriferan animals differ from coelenterate animals?
What happens to the force between two objects, if
(i) the mass of one object is doubled?
(ii) the distance between the objects is doubled and tripled?
(iii) the masses of both objects are doubled?
Two objects of masses 100 g and 200 g are moving along the same line and direction with velocities of 2 m s-1 and 1 m s-1, respectively. They collide and after the collision, the first object moves at a velocity of 1.67 m s-1. Determine the velocity of the second object.
The speed-time graph for a car is shown is Fig. 8.12.
Fig. 8.12
(a) Find how far does the car travel in the first 4 seconds. Shade the area on the graph that represents the distance travelled by the car during the period.
(b) Which part of the graph represents uniform motion of the car?
Define 1 J of work.
What are the functions of the stomata?
Abdul, while driving to school, computes the average speed for his trip to be 20 km h-1. On his return trip along the same route, there is less traffic and the average speed is 40 km h-1. What is the average speed for Abdul’s trip?
Give two reasons to justify—
(a) water at room temperature is a liquid.
(b) an iron almirah is a solid at room temperature.
A driver of a car travelling at 52 km h-1 applies the brakes and accelerates uniformly in the opposite direction. The car stops in 5 s. Another driver going at 3 km h-1 in another car applies his brakes slowly and stops in 10 s. On the same graph paper, plot the speed versus time graphs for the two cars. Which of the two cars travelled farther after the brakes were applied?
How many types of elements together make up the xylem tissue? Name them.
A train starting from a railway station and moving with uniform acceleration attains a speed 40 km h-1 in 10 minutes. Find its acceleration.
How is our atmosphere different from the atmospheres on Venus and Mars?
In each of the following a force, F is acting on an object of mass, m. The direction of displacement is from west to east shown by the longer arrow. Observe the diagrams carefully and state whether the work done by the force is negative, positive or zero.
Calculate the molecular masses of H2, O2, Cl2, CO2, CH4, C2H6, C2H4, NH3, CH3OH.