Question 1

# Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y}

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y}

Answer

**(i)** *A* = {1, 2, 3 … 13, 14}

R = {(*x*, *y*): 3*x* − *y* = 0}

**∴ **R = {(1, 3), (2, 6), (3, 9), (4, 12)}

R is not reflexive since (1, 1), (2, 2) … (14, 14) ∉ R.

Also, R is not symmetric as (1, 3) ∈R, but (3, 1) ∉ R. [3(3) − 1 ≠ 0]

Also, R is not transitive as (1, 3), (3, 9) ∈R, but (1, 9) ∉ R.

[3(1) − 9 ≠ 0]

Hence, R is neither reflexive, nor symmetric, nor transitive.

**(ii)** R = {(*x*, *y*): *y* = *x* + 5 and *x* < 4} = {(1, 6), (2, 7), (3, 8)}

It is seen that (1, 1) ∉ R.

**∴ **R is not reflexive.

(1, 6) ∈R

But,

(1, 6) ∉ R.

**∴** R is not symmetric.

Now, since there is no pair in R such that (*x*, *y*) and (*y*, *z*) ∈R, then (*x*, *z*) cannot belong to R.

**∴** R is not transitive.

Hence, R is neither reflexive, nor symmetric, nor transitive.

**(iii)** *A* = {1, 2, 3, 4, 5, 6}

R = {(*x*, *y*): *y* is divisible by *x*}

We know that any number (*x)* is divisible by itself.

(*x*, *x*) ∈R

**∴** R is reflexive.

Now,

(2, 4) ∈R [as 4 is divisible by 2]

But,

(4, 2) ∉ R. [as 2 is not divisible by 4]

**∴ **R is not symmetric.

Let (*x*, *y*), (*y*, *z*) ∈ R. Then, *y* is divisible by *x* and *z* is divisible by *y*.

**∴ ***z* is divisible by *x*.

⇒ (*x*, *z*) ∈R

**∴ **R is transitive.

Hence, R is reflexive and transitive but not symmetric.

**(iv)** R = {(*x*, *y*): *x* − *y* is an integer}

Now, for every *x* ∈ **Z**, (*x*, *x*) ∈R as *x* − *x* = 0 is an integer.

**∴ **R is reflexive.

Now, for every *x*, *y* ∈ **Z** if (*x*, *y*) ∈ R, then *x* − *y* is an integer.

⇒ −(*x* − *y*) is also an integer.

⇒ (*y* − *x*) is an integer.

**∴** (*y*, *x*) ∈ R

**∴ **R is symmetric.

Now,

Let (*x*, *y*) and (*y*, *z*) ∈R, where *x*, *y*, *z* ∈ **Z**.

⇒ (*x* − *y*) and (*y* − *z*) are integers.

⇒ *x *− *z* = (*x* − *y*) + (*y* − *z*) is an integer.

**∴** (*x*, *z*) ∈R

**∴** R is transitive.

Hence, R is reflexive, symmetric, and transitive.

**(v) ****(a) **R = {(*x*, *y*): *x* and *y* work at the same place}

(*x*, *x*) ∈ R

**∴** R is reflexive.

If (*x*, *y*) ∈ R, then *x* and *y* work at the same place.

⇒ *y* and *x* work at the same place.

⇒ (*y*, *x*) ∈ R.

**∴ **R is symmetric.

Now, let (*x*, *y*), (*y*, *z*) ∈ R

⇒ *x* and *y* work at the same place and *y* and *z* work at the same place.

⇒ *x* and *z* work at the same place.

⇒ (*x*, *z*) ∈R

**∴** R is transitive.

Hence, R is reflexive, symmetric, and transitive.

**(b)** R = {(*x*, *y*): *x* and *y* live in the same locality}

Clearly (*x*, *x*) ∈ R as *x* and *x* is the same human being.

**∴** R is reflexive.

If (*x*, *y*) ∈R, then *x* and *y* live in the same locality.

⇒ *y* and *x* live in the same locality.

⇒ (*y*, *x*) ∈ R

**∴ **R is symmetric.

Now, let (*x*, *y*) ∈ R and (*y*, *z*) ∈ R.

⇒ *x* and *y* live in the same locality and *y* and *z* live in the same locality.

⇒ *x* and *z* live in the same locality.

⇒ (*x,* *z*) ∈ R

**∴ **R is transitive.

Hence, R is reflexive, symmetric, and transitive.

**(c)** R = {(*x*, *y*): *x* is exactly 7 cm taller than *y*}

Now, (*x*, *x*) ∉ R

Since human being *x *cannot be taller than himself.

**∴ **R is not reflexive.

Now, let (*x*, *y*) ∈R.

⇒ *x* is exactly 7 cm taller than *y*.

Then, *y* is not taller than *x*.

**∴** (*y*, *x*) ∉R

Indeed if *x* is exactly 7 cm taller than *y*, then *y* is exactly 7 cm shorter than *x*.

∴R is not symmetric.

Now,

Let (*x*, *y*), (*y*, *z*) ∈ R.

⇒ *x* is exactly 7 cm taller than* y *and *y* is exactly 7 cm taller than z.

⇒ *x* is exactly 14 cm taller than *z *.

**∴ **(*x*, *z*) ∉R

**∴ **R is not transitive.

Hence, R is neither reflexive, nor symmetric, nor transitive.

**(d)** R = {(*x*, *y*): *x* is the wife of *y*}

Now, (*x*, *x*) ∉ R

Since *x* cannot be the wife of herself.

∴R is not reflexive.

Now, let (*x*, *y*) ∈ R

⇒ *x* is the wife of *y.*

Clearly *y* is not the wife of *x*.

**∴** (*y*, *x*) ∉ R

Indeed if *x* is the wife of *y*, then *y* is the husband of *x*.

**∴ **R is not transitive.

Let (*x*, *y*), (*y*, *z*) ∈ R

⇒ *x* is the wife of *y* and *y* is the wife of *z*.

This case is not possible. Also, this does not imply that *x* is the wife of *z*.

**∴** (*x*, *z*) ∉ R

**∴ **R is not transitive.

Hence, R is neither reflexive, nor symmetric, nor transitive.

**(e)** R = {(*x*, *y*): *x* is the father of *y*}

Now (*x*, *x*) ∉ R

As *x* cannot be the father of himself.

**∴**R is not reflexive.

Now, let (*x*, *y*) ∈R.

⇒ *x* is the father of *y.*

⇒ *y* cannot be the father of *y.*

Indeed, *y* is the son or the daughter of *y.*

**∴ **(*y*, *x*) ∉ R

**∴** R is not symmetric.

Now, let (*x*, *y*) ∈ R and (*y*, *z*) ∈ R.

⇒ *x* is the father of *y* and *y* is the father of *z*.

⇒ *x* is not the father of *z*.

Indeed *x* is the grandfather of *z*.

∴ (*x*, *z*) ∉ R

**∴**R is not transitive.

Hence, R is neither reflexive, nor symmetric, nor transitive.

Sant Kumar Hooda
2019-05-10 18:42:42

Thanks , Sant Kumar Hooda

2018-09-12 16:36:21

1 - ii is not correct

Manish Kumar
2018-05-01 09:10:13

2 is not correct

pankti naik
2017-09-01 15:03:11

solution of A={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} S={(x,y)/y=5x ; xâA, yâA} find S is equivalence relation or not?

Hitesh
2017-03-26 20:54:15

Very helpful

-->