\begin{align} Let \;\; cosec^{-1}\left({-\sqrt2}\right)=y \;\;Then\;\; cosec y = -{\sqrt2} =- cosec\left(\frac{\pi}{4}\right) = cosec\left(-\frac{\pi}{4}\right)\end{align}
We know that the range of the principal value branch of cosec−1 is
\begin{align} \left[-\frac{\pi}{2},\frac{\pi}{2}\right] - \left(0 \right) and \;\;cosec\left(-\frac{\pi}{4}\right) = -\sqrt2.\end{align}
Therefore, the principal value of
\begin{align} cosec^{-1}\left(-\sqrt2\right) is -\frac{\pi}{4}\end{align}
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Consider f : R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with the inverse f–1 of f given by , where R+ is the set of all non-negative real numbers.
Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
Determine order and degree(if defined) of differential equation (ym)2 + (yn)3 + (y')4 + y5 =0
The total revenue in Rupees received from the sale of x units of a product is given by
R (x) = 13x2 + 26x + 15
Find the marginal revenue when x = 7.
y = ex +1 : yn -y' = 0
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?