\begin{align} Let \;\; tan^{-1}(1)=x. \;\;Then\;\; tan x = 1 = tan\left(\frac{\pi}{4}\right).\end{align}
\begin{align} \therefore tan^{-1}(1)=tan\left(\frac{\pi}{4}\right)\end{align}
\begin{align} Let \;\;cos^{-1}\left(-\frac{1}{2}\right)=y. \;\;Then,\;\; cos y = -\frac{1}{2} = -cos\left(\frac{\pi}{3}\right)= cos\left(\pi - \frac{\pi}{3}\right) = cos\left(\frac{2\pi}{3}\right)\end{align}
\begin{align} \therefore cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}\end{align}
\begin{align} Let \;\; sin^{-1}\left(-\frac{1}{2}\right)=z. \;\;Then,\;\; sin z = -\frac{1}{2} = -sin\left(\frac{\pi}{6}\right)= sin\left(-\frac{\pi}{6}\right)\end{align}
\begin{align} \therefore sin^{-1}\left(-\frac{1}{2}\right)=-\frac{\pi}{6}\end{align}
\begin{align} \therefore tan^{-1} (1) + cos^{-1}\left(-\frac{1}{2}\right) + sin^{-1}\left(-\frac{1}{2}\right)\end{align}
\begin{align} =\frac{\pi}{4}+\frac{2\pi}{3}-\frac{\pi}{6}\end{align}
\begin{align} =\frac{3\pi + 8\pi -2\pi}{12}=\frac{9\pi}{12}=\frac{3\pi}{4}\end{align}
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Let A = R – {3} and B = R – {1}. Consider the function f : A → B defined by
Find the direction cosines of a line which makes equal angles with the coordinate axes.
Let f : R → R be defined as f(x) = 3x. Choose the correct answer.
(A) f is one-one onto
(B) f is many-one onto
(C) f is one-one but not onto
(D) f is neither one-one nor onto.
Let f : X → Y be an invertible function. Show that f has unique inverse.
(Hint: suppose g1 and g2 are two inverses of f. Then for all y ∈ Y, fog1(y) = 1Y(y) = fog2(y). Use one-one ness of f).