\begin{align} \int \frac {sec^2 x}{Coses^2 x} . dx\end{align}
\begin{align} =\int \left(\frac{\frac {1}{Cos^2 x}}{\frac{1}{sin^2 x}}\right) . dx\end{align}
\begin{align} =\int \left(\frac{Sin^2x}{Cos^2x}\right) . dx\end{align}
\begin{align} =\int tan^2 x . dx\end{align}
\begin{align} =\int \left(sec^2x - 1\right) . dx\end{align}
\begin{align} =\int sec^2x . dx - \int 1. dx\end{align}
\begin{align} = tanx - x + C\end{align}
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Determine order and degree(if defined) of differential equation \begin{align}\left(\frac{ds}{dt}\right)^4\;+\;3s\frac{d^2s}{dt^2}\;=\;0\end{align}
An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long?
Let f: X → Y be an invertible function. Show that the inverse of f –1 is f, i.e., (f–1)–1 = f.
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Classify the following measures as scalars and vectors.
(i) 10 kg (ii) 2 metres north-west (iii) 40°
(iv) 40 watt (v) 10–19 coulomb (vi) 20 m/s2
Let A and B be sets. Show that f : A × B → B × A such that f(a, b) = (b, a) is bijective function.