This page focuses on the detailed Differential Equations question answers for Class 12 Mathematics Differential Equations, addressing the question: '\begin{align} y = xsinx:xy{'}=y +x\sqrt{x^2 -y^2}(x\neq0\; and\; x>y\; or\; x<-y)\end{align}'. The solution provides a thorough breakdown of the question, highlighting key concepts and approaches to arrive at the correct answer. This easy-to-understand explanation will help students develop better problem-solving skills, reinforcing their understanding of the chapter and aiding in exam preparation.

Question 6

\begin{align} y = xsinx:xy{'}=y +x\sqrt{x^2 -y^2}(x\neq0\; and\; x>y\; or\; x<-y)\end{align}

Answer

y= x.sinx

Differentiating both sides of this equation with respect to *x*, we get:

\begin{align} y^{'} =\frac{d}{dx}\left(x.sinx\right)\end{align}

\begin{align}\Rightarrow y^{'} =sinx. \frac{d}{dx}\left(x\right)+ x. \frac{d}{dx}\left(sinx\right)\end{align}

\begin{align} \Rightarrow y^{'} =sinx + x.cosx\end{align}

Differentiating both sides of this equation with respect to *x*, we get:

L.H.S. =xy^{' }= x(sinx + xcosx)

\begin{align} =x.sinx + x^2.cosx\end{align}

\begin{align} =y + x^2.\sqrt{1-sin^2x}\end{align}

\begin{align} =y + x^2.\sqrt{1-\left(\frac{y}{x}\right)^2}\end{align}

\begin{align} =y + x^2.\sqrt{\frac{x^2-y^2}{x^2}}\end{align}

\begin{align} =y + x.\sqrt{x^2-y^2}\end{align}

R.H.S.

- Q:- Given an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive. - Q:- Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y} - Q:- Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.
- Q:- Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as

R = {(a, b): b = a + 1} is reflexive, symmetric or transitive. - Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b
^{2}} is neither reflexive nor symmetric nor transitive. - Q:-
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

(i)

*f*:**R → R**defined by*f(x)*= 3 – 4x(ii)

*f*:**R → R**defined by*f(x)*= 1 + x^{2 } - Q:- Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
- Q:-
Show that the Modulus Function

*f*: R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative. - Q:-
Prove that the Greatest Integer Function

*f*: R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x. - Q:- Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.

- Q:-
Determine order and degree(if defined) of differential equation

\begin{align}\left(\frac{d^2y}{dx^2}\right)^2\;+\;cos\left(\frac{dy}{dx}\right)\;=\;0\end{align}

- Q:- If a matrix has 24 elements, what are the possible order it can have? What, if it has 13 elements?
- Q:-
The radius of a circle is increasing at the rate of 0.7 cm/s. What is the rate of increase of its circumference?

- Q:-
Determine order and degree(if defined) of differential y

^{'}+ y =e^{x} - Q:-
If f: R → R be given by f(x) =

_{}, then fof(x) is

(A)_{}(B) x

^{3}(C) x

(D) (3 – x

^{3}). - Q:-
Prove that the Greatest Integer Function

*f*: R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x. - Q:-
Represent graphically a displacement of 40 km, 30° east of north.

- Q:- Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.
- Q:-
A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?

- Q:- Integrals sin 2x

- NCERT Chapter