Question 11

A p-n photodiode is fabricated from a semiconductor with band gap of 2.8 eV. Can it detect a wavelength of 6000 nm?

Answer

Given that,

Energy band gap of the given photodiode, E _{g} = 2.8 eV

Wavelength, λ = 6000 nm = 6000 × 10 ^{−9} m

The energy of a signal is given by the relation:* E = hc/λ*

Where, h = Planck’s constant = 6.626 × 10 ^{−34} Js

c = Speed of light = 3 × 10^{ 8} m/s

E = 6.626 x 10^{-34} x 3 x 10^{8} / 6000 x 10^{-9} = 3.313 x 10^{-20} J

But 1.6 × 10^{ −19} J = 1 eV

E = 3.313 × 10 ^{−20} J

∴E = 3.313 × 10 ^{−20} J = 3.313 x 10^{-20} / 1.6 x 10^{-19} = 0.207 eV

The energy of a signal of wavelength 6000 nm is 0.207 eV, which is less than 2.8 eV − the energy band gap of a photodiode. *Hence, the photodiode cannot detect the signal.*

- Q:-
An infinite line charge produces a field of 9 × 10

^{4}N/C at a distance of 2 cm. Calculate the linear charge density. - Q:-
A polythene piece rubbed with wool is found to have a negative charge of 3 × 10

^{−7}C.(a) Estimate the number of electrons transferred (from which to which?)

(b) Is there a transfer of mass from wool to polythene?

- Q:- ">
A point charge +10 μC is a distance 5 cm directly above the centre of a square of side 10 cm, as shown in Fig. 1.34. What is the magnitude of the electric flux through the square? (Hint: Think of the square as one face of a cube with edge 10 cm.)

- Q:-
What is the force between two small charged spheres having charges of 2 x 10

^{-7}C and 3 x 10^{-7}C placed 30 cm apart in air? - Q:-
Consider a uniform electric field E = 3 × 10

^{3}îN/C.(a) What is the flux of this field through a square of 10 cm on a side whose plane is parallel to the yz plane?

(b) What is the flux through the same square if the normal to its plane makes a 60° angle with the x-axis?

- Q:-
Two point charges q

_{A}= 3 μC and q_{B}= −3 μC are located 20 cm apart in vacuum.(a) What is the electric field at the midpoint O of the line AB joining the two charges?

(b) If a negative test charge of magnitude 1.5 × 10

^{−9}C is placed at this point, what is the force experienced by the test charge? - Q:-
A conducting sphere of radius 10 cm has an unknown charge. If the electric field 20 cm from the centre of the sphere is 1.5 × 10

^{3}N/C and points radially inward, what is the net charge on the sphere? - Q:-
A uniformly charged conducting sphere of 2.4 m diameter has a surface charge density of 80.0 μC/m

^{2}.(a) Find the charge on the sphere.

(b) What is the total electric flux leaving the surface of the sphere?

- Q:-
Two charges 5 x 10

^{-8}C and -3 x 10^{-8}C are located 16 cm apart. At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero. - Q:- A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply.

(a) What is the rms value of current in the circuit?

(b) What is the net power consumed over a full cycle?

- Q:- a) Given n resistors each of resistance R, how will you combine them to get the (i) maximum (ii) minimum effective resistance? What is the ratio of the maximum to minimum resistance?
(b) Given the resistances of 1 Ω , 2 Ω , 3 Ω , how will be combine them to get an equivalent resistance of (i) (11/3) Ω (ii) (11/5) Ω , (iii) 6 Ω , (iv) (6/11) Ω ?

(c) Determine the equivalent resistance of networks shown in Figure

">a) Given n resistors each of resistance R, how will you combine them to get the (i) maximum (ii) minimum effective resistance? What is the ratio of the maximum to minimum resistance?

(b) Given the resistances of 1 Ω , 2 Ω , 3 Ω , how will be combine them to get an equivalent resistance of (i) (11/3) Ω (ii) (11/5) Ω , (iii) 6 Ω , (iv) (6/11) Ω ?

(c) Determine the equivalent resistance of networks shown in Figure

- Q:-
What is the force between two small charged spheres having charges of 2 x 10

^{-7}C and 3 x 10^{-7}C placed 30 cm apart in air? - Q:-
A regular hexagon of side 10 cm has a charge 5 µC at each of its vertices. Calculate the potential at the centre of the hexagon.

- Q:-
A 4 µF capacitor is charged by a 200 V supply. It is then disconnected from the supply, and is connected to another uncharged 2 µF capacitor. How much electrostatic energy of the first capacitor is lost in the form of heat and electromagnetic radiation?

- Q:- The number density of free electrons in a copper conductor estimated in Example 3.1 is 8.5 x 10
^{28}m^{-3}. How long does an electron take to drift from one end of a wire 3.0 m long to its other end? The area of cross-section of the wire is 2.0 x 10^{-6}m^{2}and it is carrying a current of 3.0 A.">The number density of free electrons in a copper conductor estimated in Example 3.1 is 8.5 x 10

^{28}m^{-3}. How long does an electron take to drift from one end of a wire 3.0 m long to its other end? The area of cross-section of the wire is 2.0 x 10^{-6}m^{2}and it is carrying a current of 3.0 A. - Q:- Two charges 2 μC and −2 μC are placed at points A and B 6 cm apart.

(a) Identify an equipotential surface of the system.

(b) What is the direction of the electric field at every point on this surface? - Q:-
Two moving coil meters, M

_{1}and M_{2}have the following particulars:R

_{1}= 10 Ω, N_{1}= 30,A

_{1 }= 3.6 x 10^{-3}m2, B1 = 0.25 TR

_{2}= 14 Ω, N_{2}= 42,A

_{2}= 1.8 x 10-3 m2, B_{2}= 0.50 T(The spring constants are identical for the two meters).

Determine the ratio of (a) current sensitivity and (b) voltage sensitivity of M

_{2}and M_{1}. - Q:- A beam of light consisting of two wavelengths, 650 nm and 520 nm, is used to obtain interference fringes in a Young’s double-slit experiment.
(a) Find the distance of the third bright fringe on the screen from the central maximum for wavelength 650 nm.

(b) What is the least distance from the central maximum where the bright fringes due to both the wavelengths coincide?

">A beam of light consisting of two wavelengths, 650 nm and 520 nm, is used to obtain interference fringes in a Young’s double-slit experiment.

(a) Find the distance of the third bright fringe on the screen from the central maximum for wavelength 650 nm.

(b) What is the least distance from the central maximum where the bright fringes due to both the wavelengths coincide?

- Q:-
Two point charges q

_{A}= 3 μC and q_{B}= −3 μC are located 20 cm apart in vacuum.(a) What is the electric field at the midpoint O of the line AB joining the two charges?

(b) If a negative test charge of magnitude 1.5 × 10

^{−9}C is placed at this point, what is the force experienced by the test charge? - Q:-
Two charged conducting spheres of radii

*a*and*b*are connected to each other by a wire. What is the ratio of electric fields at the surfaces of the two spheres? Use the result obtained to explain why charge density on the sharp and pointed ends of a conductor is higher than on its flatter portions.

- NCERT Chapter

Copyright © 2020 saralstudy.com. All Rights Reserved.