• NCERT Chapter
Question 12

# Show that the relation R defined in the set A of all triangles as R = {(T1, T2): T1 is similar to T2}, is equivalence relation. Consider three right angle triangles T1 with sides 3, 4, 5, T2 with sides 5, 12, 13 and T3 with sides 6, 8, 10. Which triangles among T1, T2 and T3 are related?

R = {(T1, T2): T1 is similar to T2}

R is reflexive since every triangle is similar to itself.

Further, if (T1, T2) ∈ R, then T1 is similar to T2.

T2 is similar to T1.

⇒ (T2, T1) ∈R

∴R is symmetric.

Now,

Let (T1, T2), (T2, T3) ∈ R.

T1 is similar to T2 and T2 is similar to T3.

T1 is similar to T3.

⇒ (T1, T3) ∈ R

∴ R is transitive.

Thus, R is an equivalence relation.

Now, we can observe that:

\begin{align} \frac {3}{6}=\frac {4}{8}=\frac {5}{10} = \left(\frac {1}{2}\right) \end{align}

∴The corresponding sides of triangles T1 and T3 are in the same ratio.

Then, triangle T1 is similar to triangle T3.

Hence, T1­ is related to T3.

">

Let A = R – {3} and B = R – {1}. Consider the function  f : A → B defined by . Is f one-one and onto? Justify your answer.

• Q:- Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
• Q:-

Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.

• Q:- Show that the relation R in the set A = {1, 2, 3, 4, 5} given by R = { (a,b) ; |a - b| is even}, is an equivalence relation. Show that all the elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of {2, 4}.
• Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b2} is neither reflexive nor symmetric nor transitive.
• Q:-

Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.