Question 9

# Show that each of the relation R in the set A = { x ∈Z: 0≤x≤12}, A={x} given by

(i) R = { (a,b) : |a - b| is a multiple of 4}

(ii) R = {(a,b):a = b} is an equivalence relation.

Find the set of all elements related to 1 in each case.

(i) R = { (a,b) : |a - b| is a multiple of 4}

(ii) R = {(a,b):a = b} is an equivalence relation.

Find the set of all elements related to 1 in each case.

Answer

A = { x ∈ Z : 0 ≤ x ≤ 12} = {0,1,2,3,4,5,6,7,8,9,10,11,12}

(i) R = { (a,b) : |a - b| is a multiple of 4}

For any element *a* ∈A, we have (*a*, *a*) ∈ R as |a - a = 0|is a multiple of 4.

∴R is reflexive.

Now, let (*a*, *b*) ∈ R ⇒ |a - b| is a multiple of 4.

⇒ |-(a - b)| = ⇒ |b - a| is a multiple of 4.

⇒ (*b*, *a*) ∈ R

∴R is symmetric.

Now, let (*a*, *b*), (*b*, *c*) ∈ R.

⇒ |(a - b)| is a multiple of 4 and |(b - c)| is a multiple of 4.

⇒ (a - b) is a multiple of 4 and (b - c) is a multiple of 4.

⇒ (a - c) = (a – b) + (b – c) is a multiple of 4.

⇒ |a - c| is a multiple of 4.

⇒ (*a*, *c*) ∈R

∴ R is transitive.

Hence, R is an equivalence relation.

The set of elements related to 1 is {1, 5, 9} since

|1 - 1| = 0 is a multiple of 4,

|5 - 1| = 4 is a multiple of 4, and

|9 - 1| = 8 is a multiple of 4.

(ii) R = {(*a*, *b*): *a* = *b*}

For any element *a* ∈A, we have (*a*, *a*) ∈ R, since *a* = *a*.

∴R is reflexive.

Now, let (*a*, *b*) ∈ R.

⇒ *a* = *b*

⇒ *b* = *a*

⇒ (*b*, *a*) ∈ R

∴R is symmetric.

Now, let (*a*, *b*) ∈ R and (*b*, *c*) ∈ R.

⇒ *a* = *b* and *b* = *c*

⇒ *a* = *c*

⇒ (*a*, *c*) ∈ R

∴ R is transitive.

Hence, R is an equivalence relation.

The elements in R that are related to 1 will be those elements from set A which are equal to 1.

Hence, the set of elements related to 1 is {1}.

- Q:- Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y} - Q:- Given an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive. - Q:-
Check the injectivity and surjectivity of the following functions:

(i)

*f*:**N → N**given by*f(x*) = x^{2}(ii)

*f*:**Z → Z**given by*f(x)*= x^{2}(iii)

*f*:**R → R**given by*f(x)*= x^{2}(iv)

*f*:**N → N**given by*f(x)*= x^{3}(v)

*f*:**Z → Z**given by*f(x)*= x^{3 } - Q:- Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
- Q:-
Prove that the Greatest Integer Function

*f*: R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x. - Q:- If a matrix has 24 elements, what are the possible order it can have? What, if it has 13 elements?
- Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b
^{2}} is neither reflexive nor symmetric nor transitive. - Q:-
Show that the Modulus Function

*f*: R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative. - Q:- Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.
- Q:- If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?

- Q:-
Show that the Modulus Function

*f*: R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative. - Q:- Show that the relation R in the set A = {1, 2, 3, 4, 5} given by R = { (a,b) ; |a - b| is even}, is an equivalence relation. Show that all the elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of {2, 4}.
- Q:- Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
- Q:- Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y} - Q:-
Consider

*f*: {1, 2, 3} → {a, b, c} given by*f(1)*= a,*f(2)*= b and*f(3)*= c. Find*f*and show that^{ –1}*(f*=^{ –1})^{–1}*f*. - Q:-
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}

- Q:-
Let

*f*,*g*and*h*be functions from R to R. Show that*(f + g)oh = foh + goh**(f . g)oh = (foh) . (goh)* - Q:- Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.
- Q:- If a matrix has 24 elements, what are the possible order it can have? What, if it has 13 elements?
- Q:-
Let A = R – {3} and B = R – {1}. Consider the function

*f*: A → B defined by. Is f one-one and onto? Justify your answer.

Aithihya
2019-07-01 22:30:11

It was helpful

Parul
2019-04-13 10:30:55

Thanks it was helpful and I needed this urgently thanks a lot for the helpðð

Robin
2018-09-04 20:01:20

Attt sirraaaa fudduðð

- NCERT Chapter

Copyright © 2020 saralstudy.com. All Rights Reserved.