Write the monomers used for getting the following polymers. (i) Polyvinyl chloride (ii) Teflon (iii) Bakelite
1) Polyvinyl chloride (PVC) - The monomeric unit present is vinyl chloride (CH2 =CH –Cl). PVC is used in the manufacture of rain coats, curtain cloths, hand bags, toys, artificial flooring, gramophone records and as a good insulating material in wires and other electrical goods.
2) Teflon (PTFE) - The monomeric unit present is tetrafluoroethene (n F2C = CF2). Teflon is used as a material resistant to heat and chemical attack. It is also used for making gaskets, pump packings, valves, oil seals, non -lubricated bearings.
3) Bakelite - The monomeric unit present is formaldehyde (HCHO) and phenol (C6H5OH). Bakelite is used for making glue for binding laminated wooden planks and in varnishes, combs, fountain pens, electrical switches.
Write the names and structures of the monomers of the following polymers:
(i) Buna-S (ii) Buna-N
(iii) Dacron (iv) Neoprene
What is a biodegradable polymer? Give an example of a biodegradable aliphatic polyester.
Arrange the following polymers in increasing order of their intermolecular forces.
(i) Nylon 6, 6, Buna-S, Polythene.
(ii) Nylon 6, Neoprene, Polyvinyl chloride.
Explain the difference between Buna-N and Buna-S.
How are polymers classified on the basis of structure?
Define thermoplastics and thermosetting polymers with two examples of each.
Explain the term copolymerisation and give two examples.
How do you explain the functionality of a monomer?
Identify the monomer in the following polymeric structures.
(i)
(ii)
What are the monomeric repeating units of Nylon-6 and Nylon-6, 6?
For the reaction R → P, the concentration of a reactant changes from 0.03 M to 0.02 M in 25 minutes. Calculate the average rate of reaction using units of time both in minutes and seconds.
Write the formulas for the following coordination compounds:
(i) Tetraamminediaquacobalt (III) chloride
(ii) Potassium tetracyanonickelate(II)
(iii) Tris(ethane-1,2-diamine) chromium(III) chloride
(iv) Amminebromidochloridonitrito-N-platinate(II)
(v) Dichloridobis(ethane-1,2-diamine)platinum(IV) nitrate
(vi) Iron(III) hexacyanoferrate(II)
(i) Write structures of different isomeric amines corresponding to the molecular formula, C4H11N
(ii) Write IUPAC names of all the isomers.
(iii) What type of isomerism is exhibited by different pairs of amines?
Why are solids rigid?
Write any two characteristics of Chemisorption.
Write the structures of the following compounds.
(i) α-Methoxypropionaldehyde
(ii) 3-Hydroxybutanal
(iii) 2-Hydroxycyclopentane carbaldehyde
(iv) 4-Oxopentanal
(v) Di-sec-butyl ketone
(vi) 4-Fluoroacetophenone
Which of the ores mentioned in Table 6.1 can be concentrated by magnetic separation method?
Why are pentahalides more covalent than trihalides?
Silver atom has completely filled d orbitals (4d10) in its ground state. How can you say that it is a transition element?
Glucose or sucrose are soluble in water but cyclohexane or benzene (simple six membered ring compounds) are insoluble in water. Explain.
Give the uses of freon 12, DDT, carbon tetrachloride and iodoform.
How is leaching carried out in case of low grade copper ores?
Explain why Cu+ ion is not stable in aqueous solutions?
Explain why propanol has higher boiling point than that of the hydrocarbon, butane?
Is it true that under certain conditions, Mg can reduce SiO2 and Si can reduce MgO? What are those conditions?
Define conductivity and molar conductivity for the solution of an electrolyte. Discuss their variation with concentration.
Calculate the potential of hydrogen electrode in contact with a solution whose pH is 10.
The experimental data for decomposition of N2O5
[2N2O5 → 4NO2 + O2]
in gas phase at 318K are given below:
t/s | 0 | 400 | 800 | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 |
102 × [N2O5] mol L-1 | 1.63 | 1.36 | 1.14 | 0.93 | 0.78 | 0.64 | 0.53 | 0.43 | 0.35 |
(i) Plot [N2O5] against t.
(ii) Find the half-life period for the reaction.
(iii) Draw a graph between log[N2O5] and t.
(iv) What is the rate law ?
(v) Calculate the rate constant.
(vi) Calculate the half-life period from k and compare it with (ii).
How the following conversions can be carried out?
(i) Propene to propan-1-ol
(ii) Ethanol to but-1-yne
(iii) 1-Bromopropane to 2-bromopropane
(iv) Toluene to benzyl alcohol
(v) Benzene to 4-bromonitrobenzene
(vi) Benzyl alcohol to 2-phenylethanoic acid
(vii) Ethanol to propanenitrile
(viii) Aniline to chlorobenzene
(ix) 2-Chlorobutane to 3, 4-dimethylhexane
(x) 2-Methyl-1-propene to 2-chloro-2-methylpropane
(xi) Ethyl chloride to propanoic acid
(xii) But-1-ene to n-butyliodide
(xiii) 2-Chloropropane to 1-propanol
(xiv) Isopropyl alcohol to iodoform
(xv) Chlorobenzene to p-nitrophenol
(xvi) 2-Bromopropane to 1-bromopropane
(xvii) Chloroethane to butane
(xviii) Benzene to diphenyl
(xix) tert-Butyl bromide to isobutyl bromide
(xx) Aniline to phenylisocyanide
Arrange the following metals in the order in which they displace each other from the solution of their salts.
Al, Cu, Fe, Mg and Zn
Thanks
Hai
Thanks sir
ThXxxx sir/madam
Thanks sir
Thanku
Thanku
Sir glyptal ka nai bataye
Thanks sir
thanks sir