(i) Let A = \(\begin{vmatrix}3 & -1 & -2\\0 & 1 & 2\\0 & 0 & 4\end{vmatrix}\)
It can be observed that in the second row, two entries are zero. Thus, we expand along the second row for easier calculation.
|A| = -0\(\begin{vmatrix}-1 & -2\\-5 & 0\end{vmatrix}\) + 0\(\begin{vmatrix}3 & -2\\3 & 0\end{vmatrix}\) – (-1)\(\begin{vmatrix}3 &-1\\3 &-5\end{vmatrix}\) = (-15 + 3) = -12
(ii) Let A = \(\begin{vmatrix}0 & 1 & 2\\-1 & 0 & -3\\-2 & 3 & 0\end{vmatrix}\)
By expanding along the first row, we have:
|A| = 3\(\begin{vmatrix}1 & -2\\3 & 1\end{vmatrix}\) + 4\(\begin{vmatrix}1 & -2\\2 & 1\end{vmatrix}\) + 5\(\begin{vmatrix}1 &1\\2 &3\end{vmatrix}\)
= 3 (1+6) + 4(1+4) + 5(3-2)
= 3 (7) + 4 (5) + 5 (1)
= 21 + 20 + 5
= 46
(iii) Let A = \(\begin{vmatrix}3 & -4 & 5\\1 & 1 & -2\\2 & 3 & 1\end{vmatrix}\)
By expanding along the first row, we have:
|A| = 0\(\begin{vmatrix}0 & -3\\3 & 0\end{vmatrix}\) - 1\(\begin{vmatrix}-1 & -3\\-2 & 0\end{vmatrix}\) + 2\(\begin{vmatrix}-1 & 0\\-2 &3\end{vmatrix}\)
= 0 – 1(0 – 6) + 2 (-3 - 0)
= -1 (-6) + 2(-3)
= 6 – 6
= 0
(iv) Let A = \(\begin{vmatrix}2 & -1 & -2\\0 & 2 & -1\\3 & -5 & 0\end{vmatrix}\)
By expanding along the first column, we have:
|A| = 2\(\begin{vmatrix}2 & -1\\-5 & 0\end{vmatrix}\) - 0\(\begin{vmatrix}-1 & -2\\-5 & 0\end{vmatrix}\) + 3\(\begin{vmatrix}-1 & -2\\2 & -1\end{vmatrix}\)
= 2(0 – 5) – 0 + 3(1 + 4)
= -10 + 15 = 5
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Show that the Signum Function f : R → R, given by
is neither one-one nor onto.
The radius of an air bubble is increasing at the rate of 1/2 cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
A balloon, which always remains spherical on inflation, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at which the radius of the balloon increases when the radius is 15 cm.
Classify the following as scalar and vector quantities.
(i) time period (ii) distance (iii) force
(iv) velocity (v) work done