The radius of an air bubble is increasing at the rate of 1/2 cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?
The air bubble is in the shape of a sphere.
Now, the volume of an air bubble (V) with radius (r) is given by,
\begin{align} V = \frac{4}{3}\pi r^3 \end{align}
The rate of change of volume (V) with respect to time (t) is given by,
\begin{align} \frac{dV}{dt} = \frac{4}{3}\pi \frac{d}{dr}(r^3).\frac{dr}{dt} \;\;\;[By\; Chain\; Rule] \end{align}
\begin{align} = \frac{4}{3}\pi (3r^2).\frac{dr}{dt} \end{align}
\begin{align} = \frac{4}{3}\pi r^2.\frac{dr}{dt} \end{align}
It is given that
\begin{align} \frac{dr}{dt}=\frac{1}{2} cm/s .\end{align}
Therefore, when r = 1 cm,
\begin{align} \frac{dV}{dt}=4\pi(1)^2.(\frac{1}{2})=2\pi\; cm^3/s \end{align}
Hence, the rate at which the volume of the bubble increases is 2π cm3/s.
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?
A balloon, which always remains spherical on inflation, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at which the radius of the balloon increases when the radius is 15 cm.
The rate of change of the area of a circle with respect to its radius r at r = 6 cm is
(A) 10π (B) 12π (C) 8π (D) 11π
The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.
A balloon, which always remains spherical, has a variable diameter
\begin{align} \frac{3}{2}(2x+1)\end{align}
Find the rate of change of its volume with respect to x.
Consider f : R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with the inverse f–1 of f given by , where R+ is the set of all non-negative real numbers.
Thanks