Question 12

The radius of an air bubble is increasing at the rate of 1/2 cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?

Answer

The air bubble is in the shape of a sphere.

Now, the volume of an air bubble (*V*) with radius (*r*) is given by,

\begin{align} V = \frac{4}{3}\pi r^3 \end{align}

The rate of change of volume (*V)* with respect to time (*t)* is given by,

\begin{align} \frac{dV}{dt} = \frac{4}{3}\pi \frac{d}{dr}(r^3).\frac{dr}{dt} \;\;\;[By\; Chain\; Rule] \end{align}

\begin{align} = \frac{4}{3}\pi (3r^2).\frac{dr}{dt} \end{align}

\begin{align} = \frac{4}{3}\pi r^2.\frac{dr}{dt} \end{align}

It is given that

\begin{align} \frac{dr}{dt}=\frac{1}{2} cm/s .\end{align}

Therefore, when *r* = 1 cm,

\begin{align} \frac{dV}{dt}=4\pi(1)^2.(\frac{1}{2})=2\pi\; cm^3/s \end{align}

Hence, the rate at which the volume of the bubble increases is 2π cm^{3}/s.

- Q:- Given an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive. - Q:- Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y} - Q:- Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.
- Q:- Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as

R = {(a, b): b = a + 1} is reflexive, symmetric or transitive. - Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b
^{2}} is neither reflexive nor symmetric nor transitive. - Q:-
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

(i)

*f*:**R → R**defined by*f(x)*= 3 – 4x(ii)

*f*:**R → R**defined by*f(x)*= 1 + x^{2 } - Q:- Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
- Q:-
Show that the Modulus Function

*f*: R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative. - Q:-
Prove that the Greatest Integer Function

*f*: R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x. - Q:- Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.

- Q:-
Prove that the Greatest Integer Function

*f*: R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x. - Q:- Given an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive. - Q:- Find the principal value of \begin{align} tan^{-1}\left(-1\right)\end{align}
- Q:- Find the principal value of \begin{align} sec^{-1}\left(\frac{2}{\sqrt3}\right)\end{align}
- Q:-
A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?

- Q:-
A balloon, which always remains spherical on inflation, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at which the radius of the balloon increases when the radius is 15 cm.

- Q:-
The rate of change of the area of a circle with respect to its radius

*r*at*r*= 6 cm is(A) 10π (B) 12π (C) 8π (D) 11π

- Q:-
The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.

- Q:-
A balloon, which always remains spherical, has a variable diameter

\begin{align} \frac{3}{2}(2x+1)\end{align}

Find the rate of change of its volume with respect to

*x*. - Q:-
Consider

*f*: R_{+}→ [4, ∞) given by f(x) = x^{2}+ 4. Show that*f*is invertible with the inverse*f*^{–1}of f given by_{}, where R_{+}is the set of all non-negative real numbers.

Dhriti
2016-04-15 10:12:36

Thanks

- NCERT Chapter