Question 7

A 100 W sodium lamp radiates energy uniformly in all directions. The lamp is located at the centre of a large sphere that absorbs all the sodium light which is incident on it. The wavelength of the sodium light is 589 nm.

(a) What is the energy per photon associated with the sodium light?

(b) At what rate are the photons delivered to the sphere?

Answer

Power of the sodium lamp, P = 100 W

Wavelength of the emitted sodium light, λ = 589 nm = 589 × 10−9 m

Planck’s constant, h = 6.626 × 10−34 Js

Speed of light, c = 3 × 108 m/s

(a) The energy per photon associated with the sodium light is given as: E = hc/λ = 6.626 x 10-34 x 3 x 108 / 589 x 10-9 = 3.37 x 10-19 J

= 3.37 x 10-19 / 1.6 x 10-19 = 2.11 eV

 

(b) Number of photons delivered to the sphere = n.

The equation for power can be written as: P = nE

n = P/E = 100 / 3.37 x 10-19 = 2.96 x 1020 photons/s

Therefore, every second, 2.96 x 1020 photons are delivered to the sphere.

Popular Questions of Class 12 Physics

Recently Viewed Questions of Class 12 Physics

Write a Comment: