Question 3

# Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as

R = {(a, b): b = a + 1} is reflexive, symmetric or transitive.

Answer

Let *A* = {1, 2, 3, 4, 5, 6}.

A relation R is defined on set *A* as:

R = {(*a*, *b*): *b* = *a* + 1}

**∴** R = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}

We can find (*a*, *a*) ∉ R, where *a *∈ A.

For instance,

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) ∉ R

**∴** R is not reflexive.

It can be observed that (1, 2) ∈ R, but (2, 1) ∉ R.

**∴** R is not symmetric.

Now, (1, 2), (2, 3) ∈ **R**

But,

(1, 3) ∉ R

∴R is not transitive

Hence, R is neither reflexive, nor symmetric, nor transitive.