Question 11

Consider* f *: {1, 2, 3} → {a, b, c} given by *f(1)* = a, *f(2)* = b and *f(3)* = c. Find* f ^{ –1}* and show that

Answer

Function *f*: {1, 2, 3} → {*a*, *b*, *c*} is given by,

*f*(1) = *a*, *f*(2) = *b,* and *f*(3) = *c*

If we define *g*: {*a*, *b*, *c*} → {1, 2, 3} as *g*(*a*) = 1, *g*(*b*) = 2, *g*(*c*) = 3, then we have:

*gof* = I_{x} and *fog =* I_{y} where *X* = {1, 2, 3} and *Y*= {*a*, *b*, *c*}.

Thus, the inverse of *f* exists and *f* ^{- 1} **=** *g*.

∴*f* ^{- 1}: {*a*, *b*, *c*} → {1, 2, 3} is given by,

*f*^{ - 1}(*a*) = 1, *f* ^{- 1}(*b*) = 2, *f*^{-1}(*c*) = 3

Let us now find the inverse of *f* - 1 i.e., find the inverse of *g*.

If we define *h*: {1, 2, 3} → {*a*, *b*, *c*} as

*h*(1) = *a*, *h*(2) = *b*, *h*(3) = *c*, then we have:

∴, where *X* = {1, 2, 3} and *Y* = {*a*, *b*, *c*}.

Thus, the inverse of *g* exists and *g* ^{- 1} = *h* ⇒ (*f* ^{- 1})^{ - 1} = *h*.

It can be noted that *h* = *f*.

Hence, (*f*^{ - 1}) ^{- 1} = *f*.

- Q:- Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y} - Q:- Given an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive. - Q:- Show that each of the relation R in the set A = { x ∈Z: 0≤x≤12}, A={x} given by

(i) R = { (a,b) : |a - b| is a multiple of 4}

(ii) R = {(a,b):a = b} is an equivalence relation.

Find the set of all elements related to 1 in each case. - Q:-
Check the injectivity and surjectivity of the following functions:

(i)

*f*:**N → N**given by*f(x*) = x^{2}(ii)

*f*:**Z → Z**given by*f(x)*= x^{2}(iii)

*f*:**R → R**given by*f(x)*= x^{2}(iv)

*f*:**N → N**given by*f(x)*= x^{3}(v)

*f*:**Z → Z**given by*f(x)*= x^{3 } - Q:- Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
- Q:-
Prove that the Greatest Integer Function

*f*: R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x. - Q:- If a matrix has 24 elements, what are the possible order it can have? What, if it has 13 elements?
- Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b
^{2}} is neither reflexive nor symmetric nor transitive. - Q:-
Show that the Modulus Function

*f*: R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative. - Q:- Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.

- Q:-
Let f : R → R be defined as f(x) = x

^{4}. Choose the correct answer.(A)

*f*is one-one onto(B)

*f*is many-one onto(C)

*f*is one-one but not onto(D)

*f*is neither one-one nor onto. - Q:-
Consider

*f*: R → R given by*f(x)*= 4x + 3. Show that*f*is invertible. Find the inverse of*f*. - Q:- Show that each of the relation R in the set A = { x ∈Z: 0≤x≤12}, A={x} given by

(i) R = { (a,b) : |a - b| is a multiple of 4}

(ii) R = {(a,b):a = b} is an equivalence relation.

Find the set of all elements related to 1 in each case. - Q:-
The total cost

*C*(*x*) in Rupees associated with the production of*x*units of an item is given byC(X) = 0.007 x

^{3}- 0.003x^{2}+ 15x + 4000Find the marginal cost when 17 units are produced.

- Q:- Let R be the relation in the set N given by R = {(a, b): a = b − 2, b > 6}. Choose the correct answer.

(A) (2, 4) ∈ R

(B) (3, 8) ∈R

(C) (6, 8) ∈R

(D) (8, 7) ∈ R - Q:- Given an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive. - Q:-
Show that the Modulus Function

*f*: R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative. - Q:-
Show that

*f*: [–1, 1] → R, given by is one-one. Find the inverse of the function*f*: [–1, 1] → Range*f*.**(Hint: For***y*∈ Range*f*,*y*=, for some*x*in [ - 1, 1], i.e.,) - Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b
^{2}} is neither reflexive nor symmetric nor transitive. - Q:- Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y}

- NCERT Chapter

Copyright © 2020 saralstudy.com. All Rights Reserved.