An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long?
Let x be the length of a side and V be the volume of the cube. Then,
V = x3.
\begin{align}\therefore \frac{dV}{dt}=3x^2.\frac{dx}{dt}\;\;\;[By\; Chain \;Rule]\end{align}
It is given that,
\begin{align} \frac{dx}{dt}=3 \;cm^2/s\end{align}
\begin{align}\therefore \frac{dV}{dt}=3x^2.(3) = 9x^2\end{align}
Thus, when x = 10 cm,
\begin{align} \frac{dV}{dt}=9 (10)^2=900 \;cm^3/s\end{align}
Hence, the volume of the cube is increasing at the rate of 900 cm3/s when the edge is 10 cm long.
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Let f, g and h be functions from R to R. Show that
(f + g)oh = foh + goh
(f . g)oh = (foh) . (goh)
Classify the following as scalar and vector quantities.
(i) time period (ii) distance (iii) force
(iv) velocity (v) work done
Show that the Signum Function f : R → R, given by
is neither one-one nor onto.
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
why dv/dt=3x^2.dx/dt