Question 24

A uniform magnetic field of 3000 G is established along the positive z-direction. A rectangular loop of sides 10 cm and 5 cm carries a current of 12 A. What is the torque on the loop in the different cases shown in Figure? What is the force on each case? Which case corresponds to stable equilibrium?

Answer

Magnetic field strength, B = 3000 G = 3000 × 10^{-4} T = 0.3 T

Length of the rectangular loop, l = 10 cm

Width of the rectangular loop, b = 5 cm

Area of the loop,

A = l × b = 10 × 5 = 50 cm^{2} = 50 × 10^{-4} m^{2}

Current in the loop, I = 12 A

Now, taking the anti-clockwise direction of the current as positive and vise-versa:

(a) Torque,

From the given figure, it can be observed that A is normal to the y-z plane and B is directed along the z-axis.

The torque 1.8 x 10^{-2 }is N m along the negative y-direction. The force on the loop is zero because the angle between A and B is zero.

(b) This case is similar to case (a). Hence, the answer is the same as (a).

(c) Torque

From the given figure, it can be observed that A is normal to the x-z plane and B is directed along the z-axis.

The torque 1.8 x 10^{-2 } is N m along the negative x direction and the force is zero.

(d) Magnitude of torque is given as:

Torque is 1.8 x 10^{-2 }N m at an angle of 240° with positive x direction. The force is zero.

(e) Torque

Hence, the torque is zero. The force is also zero.

(f) Torque

Hence, the torque is zero. The force is also zero.

In case (e), the direction of and is the same and the angle between them is zero. If displaced, they come back to an equilibrium. Hence, its equilibrium is stable.

Whereas, in case (f), the direction of and is opposite. The angle between them is 180°. If disturbed, it does not come back to its original position. Hence, its equilibrium is unstable.

- Q:-
An infinite line charge produces a field of 9 × 10

^{4}N/C at a distance of 2 cm. Calculate the linear charge density. - Q:-
What is the force between two small charged spheres having charges of 2 x 10

^{-7}C and 3 x 10^{-7}C placed 30 cm apart in air? - Q:-
A polythene piece rubbed with wool is found to have a negative charge of 3 × 10

^{−7}C.(a) Estimate the number of electrons transferred (from which to which?)

(b) Is there a transfer of mass from wool to polythene?

- Q:-
A parallel plate capacitor with air between the plates has a capacitance of 8 pF (1pF = 10

^{-12}F). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6? - Q:- A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil?
- Q:-
A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?

- Q:-
A regular hexagon of side 10 cm has a charge 5 µC at each of its vertices. Calculate the potential at the centre of the hexagon.

- Q:-
A point charge +10 μC is a distance 5 cm directly above the centre of a square of side 10 cm, as shown in Fig. 1.34. What is the magnitude of the electric flux through the square? (Hint: Think of the square as one face of a cube with edge 10 cm.)

- Q:-
A point charge of 2.0 μC is at the centre of a cubic Gaussian surface 9.0 cm on edge. What is the net electric flux through the surface?

- Q:-
A conducting sphere of radius 10 cm has an unknown charge. If the electric field 20 cm from the centre of the sphere is 1.5 × 10

^{3}N/C and points radially inward, what is the net charge on the sphere?

- Q:-
What is the shape of the wavefront in each of the following cases:

(a) Light diverging from a point source.

(b) Light emerging out of a convex lens when a point source is placed at its focus.

(c) The portion of the wavefront of light from a distant star intercepted by the Earth.

- Q:-
An electrical technician requires a capacitance of 2 µF in a circuit across a potential difference of 1 kV. A large number of 1 µF capacitors are available to him each of which can withstand a potential difference of not more than 400 V. Suggest a possible arrangement that requires the minimum number of capacitors.

- Q:-
What is the net flux of the uniform electric field of Exercise 1.15 through a cube of side 20 cm oriented so that its faces are parallel to the coordinate planes?

- Q:-
Monochromatic light of wavelength 589 nm is incident from air on a water surface. What are the wavelength, frequency and speed of

(a) reflected, and

(b) refracted light? Refractive index of water is 1.33. - Q:-
A parallel beam of light of wavelength 500 nm falls on a narrow slit and the resulting diffraction pattern is observed on a screen 1 m away. It is observed that the first minimum is at a distance of 2.5 mm from the centre of the screen. Find the width of the slit.

- Q:-
An electron and a photon each have a wavelength of 1.00 nm. Find

(a) their momenta,

(b) the energy of the photon, and

(c) the kinetic energy of electron.

- Q:- A radio can tune in to any station in the 7.5 MHz to 12 MHz band. What is the corresponding wavelength band?
- Q:-
(a) Three resistors 2 Ω, 4 Ω and 5 Ω are combined in parallel. What is the total resistance of the combination?

(b) If the combination is connected to a battery of emf 20 V and negligible internal resistance, determine the current through each resistor, and the total current drawn from the battery.

- Q:-
A point charge +10 μC is a distance 5 cm directly above the centre of a square of side 10 cm, as shown in Fig. 1.34. What is the magnitude of the electric flux through the square? (Hint: Think of the square as one face of a cube with edge 10 cm.)

- Q:-
Is it necessary for a transmitting antenna to be at the same height as that of the receiving antenna for line-of-sight communication? A TV transmitting antenna is 81m tall. How much service area can it cover if the receiving antenna is at the ground level?

MD Azeen
2017-09-26 16:08:02

How can be 240 degree and f=0 and stability I have not understood.

- NCERT Chapter

Copyright © 2022 saralstudy.com. All Rights Reserved.