A balloon, which always remains spherical, has a variable diameter
\begin{align} \frac{3}{2}(2x+1)\end{align}
Find the rate of change of its volume with respect to x.
The volume of a sphere (V) with radius (r) is given by,
\begin{align} V=\frac{4}{3}\pi r^3 \end{align}
It is given that:
\begin{align} Diameter =\frac{3}{2}(2x+1) \end{align}
\begin{align} \Rightarrow r =\frac{3}{4}(2x+1) \end{align}
\begin{align} \therefore V =\frac{4}{3}\pi(\frac{3}{4})^3(2x+1)^3=\frac{9}{16}\pi\times(2x+1)^3 \end{align}
Hence, the rate of change of volume with respect to x is as
\begin{align} \frac{dV}{dx}=\frac{9}{16}\pi\frac{d}{dx}(2x+1)^3=\frac{9}{16}\pi\times3(2x+1)^2 \times2=\frac{27}{8}\pi(2x+1)^2\end{align}
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Determine order and degree(if defined) of differential equation ym + 2yn + y' =0
Let f: X → Y be an invertible function. Show that the inverse of f –1 is f, i.e., (f–1)–1 = f.
Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?
Answer the following as true or false.
\begin{align}(i) \overrightarrow{a}\; and\; \overrightarrow{-a}\; are\; collinear.\end{align}
(ii) Two collinear vectors are always equal in magnitude.
(iii) Two vectors having same magnitude are collinear.
(iv) Two collinear vectors having the same magnitude are equal.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
A balloon, which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm.
Show that the function f : R* → R* defined by f(x) = 1/x is one-one and onto,where R* is the set of all non-zero real numbers. Is the result true, if the domain R* is replaced by N with co-domain being same as R* ?
A particle moves along the curve 6y = x3 + 2. Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate.