Question 27

In a certain region of space, electric field is along the z-direction throughout. The magnitude of electric field is, however, not constant but increases uniformly along the positive z-direction, at the rate of 105 NC^{-1 }per metre. What are the force and torque experienced by a system having a total dipole moment equal to 10^{-7} Cm in the negative z-direction?

Answer

Dipole moment of the system, p = q × dl = −10^{−7} C m

Rate of increase of electric field per unit length,

Force (F) experienced by the system is given by the relation,

F = qE

= −10^{−7} × 10^{−5}

= −10^{−2} N

The force is −10^{−2} N in the negative z-direction i.e., opposite to the direction of electric field. Hence, the angle between electric field and dipole moment is 180°.

Torque (τ) is given by the relation,

τ = pE sin180° = 0

Therefore, the torque experienced by the system is zero.

- Q:-
What is the force between two small charged spheres having charges of 2 x 10

^{-7}C and 3 x 10^{-7}C placed 30 cm apart in air? - Q:-
An infinite line charge produces a field of 9 × 10

^{4}N/C at a distance of 2 cm. Calculate the linear charge density. - Q:-
A polythene piece rubbed with wool is found to have a negative charge of 3 × 10

^{−7}C.(a) Estimate the number of electrons transferred (from which to which?)

(b) Is there a transfer of mass from wool to polythene?

- Q:-
A parallel plate capacitor with air between the plates has a capacitance of 8 pF (1pF = 10

^{-12}F). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6? - Q:- A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil?
- Q:-
A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?

- Q:-
A regular hexagon of side 10 cm has a charge 5 µC at each of its vertices. Calculate the potential at the centre of the hexagon.

- Q:-
A point charge +10 μC is a distance 5 cm directly above the centre of a square of side 10 cm, as shown in Fig. 1.34. What is the magnitude of the electric flux through the square? (Hint: Think of the square as one face of a cube with edge 10 cm.)

- Q:-
A point charge of 2.0 μC is at the centre of a cubic Gaussian surface 9.0 cm on edge. What is the net electric flux through the surface?

- Q:-
The electrostatic force on a small sphere of charge 0.4 μC due to another small sphere of charge − 0.8 μC in air is 0.2 N.

(a) What is the distance between the two spheres?

(b) What is the force on the second sphere due to the first?

- Q:-
A circular coil of 16 turns and radius 10 cm carrying a current of 0.75 A rests with its plane normal to an external field of magnitude 5.0 x 10

^{-2 }T. The coil is free to turn about an axis in its plane perpendicular to the field direction. When the coil is turned slightly and released, it oscillates about its stable equilibrium with a frequency of 2.0 s^{-1}. What is the moment of inertia of the coil about its axis of rotation? - Q:-
A plane electromagnetic wave travels in vacuum along z-direction. What can you say about the directions of its electric and magnetic field vectors? If the frequency of the wave is 30 MHz, what is its wavelength?

- Q:-
Describe schematically the equipotential surfaces corresponding to

(a) a constant electric field in the

*z*-direction,(b) a field that uniformly increases in magnitude but remains in a constant (say,

*z*) direction,(c) a single positive charge at the origin, and

(d) a uniform grid consisting of long equally spaced parallel charged wires in a plane

- Q:-
In an unbiased p-n junction, holes diffuse from the p-region to n-region because

(a) free electrons in the n-region attract them.

(b) they move across the junction by the potential difference.

(c) hole concentration in p-region is more as compared to n-region.

(d) All the above.

- Q:-
A long straight wire in the horizontal plane carries a current of 50 A in north to south direction. Give the magnitude and direction of B at a point 2.5 m east of the wire.

- Q:-
**(a)**An electrostatic field line is a continuous curve. That is, a field line cannot have sudden breaks. Why not?**(b)**Explain why two field lines never cross each other at any point? - Q:-
A charge of 8 mC is located at the origin. Calculate the work done in taking a small charge of -2 x 10

^{-9}C from a point P (0, 0, 3 cm) to a point Q (0, 4 cm, 0), via a point R (0, 6 cm, 9 cm). - Q:-
Careful measurement of the electric field at the surface of a black box indicates that the net outward flux through the surface of the box is 8.0 × 103 N m2/C.

(a) What is the net charge inside the box?

(b) If the net outward flux through the surface of the box were zero, could you conclude that there were no charges inside the box? Why or Why not?

- Q:-
The work function for a certain metal is 4.2 eV. Will this metal give photoelectric emission for incident radiation of wavelength 330 nm?

- Q:-
The radius of the innermost electron orbit of a hydrogen atom is 5.3 ×10

^{−11}m. What are the radii of the n = 2 and n =3 orbits?

Sanu
2019-05-19 22:04:10

Thanks

Ekamjeet Singh Grewal
2018-11-03 14:49:39

There's a error in the typing

- NCERT Chapter

Copyright © 2022 saralstudy.com. All Rights Reserved.