Question 6

Show that *f* : [–1, 1] → R, given by is one-one. Find the inverse of the function *f* : [–1, 1] → Range *f*.

**(Hint: For y ∈ Range f, y =, for some x in [ - 1, 1], i.e.,)**

Answer

*f*: [ - 1, 1] → R is given as

Let *f*(*x*) = *f*(*y*).

∴ *f* is a one-one function.

It is clear that *f*: [ - 1, 1] → Range *f* is onto.

∴ *f*: [ - 1, 1]→ Range *f* is one-one and onto and therefore, the inverse of the function:

*f*: [ - 1, 1] → Range *f* exists.

Let *g*: Range *f* → [ - 1, 1] be the inverse of *f*.

Let *y* be an arbitrary element of range *f*.

Since *f*: [ - 1, 1] → Range *f* is onto, we have:

Now, let us define *g*: Range *f* → [ - 1, 1] as

∴*g*o*f* =I_{[-1, 1]}and *f*o*g* = I_{Range f}

∴ *f* - 1 = *g*

⇒

- Q:- Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y} - Q:- Given an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive. - Q:- Show that each of the relation R in the set A = { x ∈Z: 0≤x≤12}, A={x} given by

(i) R = { (a,b) : |a - b| is a multiple of 4}

(ii) R = {(a,b):a = b} is an equivalence relation.

Find the set of all elements related to 1 in each case. - Q:-
Check the injectivity and surjectivity of the following functions:

(i)

*f*:**N → N**given by*f(x*) = x^{2}(ii)

*f*:**Z → Z**given by*f(x)*= x^{2}(iii)

*f*:**R → R**given by*f(x)*= x^{2}(iv)

*f*:**N → N**given by*f(x)*= x^{3}(v)

*f*:**Z → Z**given by*f(x)*= x^{3 } - Q:-
Prove that the Greatest Integer Function

*f*: R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x. - Q:- Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
- Q:- If a matrix has 24 elements, what are the possible order it can have? What, if it has 13 elements?
- Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b
^{2}} is neither reflexive nor symmetric nor transitive. - Q:- Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.
- Q:-
Show that the Modulus Function

*f*: R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.

- Q:-
Consider

*f*: R_{+}→ [– 5, ∞) given by*f(x)*= 9x^{2}+ 6x – 5. Show that*f*is invertible

with**.** - Q:- Integrals (ax + b)
^{2} - Q:- Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y} - Q:-
Find gof and fog, if

(i)

*f(x)*= | x | and*g(x)*= | 5x – 2 |

(ii)*f(x)*= 8x3 and*g(x)*= x^{1/3}. - Q:- Show that the relation R in the set A = {1, 2, 3, 4, 5} given by R = { (a,b) ; |a - b| is even}, is an equivalence relation. Show that all the elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of {2, 4}.
- Q:-
Let

*f*: {1, 3, 4} → {1, 2, 5} and*g*: {1, 2, 5} → {1, 3} be given by*f*= {(1, 2), (3, 5), (4, 1)} and*g*= {(1, 3), (2, 3), (5, 1)}. Write down gof. - Q:-
Let

*f*: X → Y be an invertible function. Show that the inverse of*f*is f, i.e.,^{–1}*(f*=^{–1})^{–1}*f*. - Q:- Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
- Q:-
Let

*f*: R → R be defined as f(x) = 3x. Choose the correct answer.(A)

*f*is one-one onto(B)

*f*is many-one onto(C)

*f*is one-one but not onto(D)

*f*is neither one-one nor onto. - Q:-
Show that the Modulus Function

*f*: R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.

VIDIT
2019-05-03 14:20:46

WHERE IS THE RANGE OF THE FUNCTION

- NCERT Chapter

Copyright © 2020 saralstudy.com. All Rights Reserved.