This page focuses on the detailed Relations and Functions question answers for Class 12 Mathematics Relations and Functions, addressing the question: 'Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all point related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.'. The solution provides a thorough breakdown of the question, highlighting key concepts and approaches to arrive at the correct answer. This easy-to-understand explanation will help students develop better problem-solving skills, reinforcing their understanding of the chapter and aiding in exam preparation.

Question 11

## Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all point related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.

Answer

R = {(P, Q): distance of point P from the origin is the same as the distance of point Q from the origin}

Clearly, (P, P) ∈ R since the distance of point P from the origin is always the same as the distance of the same point P from the origin.

∴R is reflexive.

Now,

Let (P, Q) ∈ R.

⇒ The distance of point P from the origin is the same as the distance of point Q from the origin.

⇒ The distance of point Q from the origin is the same as the distance of point P from the origin.

⇒ (Q, P) ∈ R

∴R is symmetric.

Now,

Let (P, Q), (Q, S) ∈ R.

⇒ The distance of points P and Q from the origin is the same and also, the distance of points Q and S from the origin is the same.

⇒ The distance of points P and S from the origin is the same.

⇒ (P, S) ∈ R

∴R is transitive.

Therefore, R is an equivalence relation.

The set of all points related to P ≠ (0, 0) will be those points whose distance from the origin is the same as the distance of point P from the origin.

In other words, if O (0, 0) is the origin and OP = *k*, then the set of all points related to P is at a distance of *k* from the origin.

Hence, this set of points forms a circle with the centre as the origin and this circle passes through point P.

- Q:- Given an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive. - Q:- Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y} - Q:- Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.
- Q:- Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as

R = {(a, b): b = a + 1} is reflexive, symmetric or transitive. - Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b
^{2}} is neither reflexive nor symmetric nor transitive. - Q:-
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

(i)

*f*:**R → R**defined by*f(x)*= 3 – 4x(ii)

*f*:**R → R**defined by*f(x)*= 1 + x^{2 } - Q:- Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
- Q:-
Show that the Modulus Function

*f*: R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative. - Q:-
Prove that the Greatest Integer Function

*f*: R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x. - Q:- Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.

- Q:-
Answer the following as true or false.

\begin{align}(i) \overrightarrow{a}\; and\; \overrightarrow{-a}\; are\; collinear.\end{align}

(ii) Two collinear vectors are always equal in magnitude.

(iii) Two vectors having same magnitude are collinear.

(iv) Two collinear vectors having the same magnitude are equal.

- Q:-
In Figure, identify the following vectors.

(i) Coinitial (ii) Equal (iii) Collinear but not equal

- Q:-
A balloon, which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm.

- Q:-
Let f : R → R be defined as f(x) = x

^{4}. Choose the correct answer.(A)

*f*is one-one onto(B)

*f*is many-one onto(C)

*f*is one-one but not onto(D)

*f*is neither one-one nor onto. - Q:-
Check the injectivity and surjectivity of the following functions:

(i)

*f*:**N → N**given by*f(x*) = x^{2}(ii)

*f*:**Z → Z**given by*f(x)*= x^{2}(iii)

*f*:**R → R**given by*f(x)*= x^{2}(iv)

*f*:**N → N**given by*f(x)*= x^{3}(v)

*f*:**Z → Z**given by*f(x)*= x^{3 } - Q:-
Find the direction cosines of a line which makes equal angles with the coordinate axes.

- Q:- \begin{align} \int \frac{x^3 + 3x + 4}{\sqrt{x}} . dx\end{align}
- Q:-
Let

*f*: X → Y be an invertible function. Show that the inverse of*f*is f, i.e.,^{–1}*(f*=^{–1})^{–1}*f*. - Q:-
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?

- Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b
^{2}} is neither reflexive nor symmetric nor transitive.

- NCERT Chapter