Question 11

A particle moves along the curve 6y = x^{3} + 2. Find the points on the curve at which the *y*-coordinate is changing 8 times as fast as the *x*-coordinate.

Answer

The equation of the curve is given as:

6y = x^{3} + 2

The rate of change of the position of the particle with respect to time (*t)* is given by,

\begin{align}6\frac{dy}{dt} = 3x^2\frac{dx}{dt}+0\end{align}

\begin{align}\Rightarrow 2\frac{dy}{dt} = x^2\frac{dx}{dt}\end{align}

When the *y*-coordinate of the particle changes 8 times as fast as the

\begin{align}x-coordinate\; i.e.,\left(\frac{dy}{dt} = 8\frac{dx}{dt}\right), we \;have:\end{align}

\begin{align}2\left(8.\frac{dx}{dt}\right) = x^2.\frac{dx}{dt}\end{align}

\begin{align}\Rightarrow 16.\frac{dx}{dt} = x^2.\frac{dx}{dt}\end{align}

\begin{align}\Rightarrow (x^2 - 16).\frac{dx}{dt} =0 \end{align}

\begin{align}\Rightarrow x^2=16 \end{align}

\begin{align}\Rightarrow x=\pm 4 \end{align}

\begin{align}When\; x = 4, y = \frac{4^3 + 2}{6}=\frac{66}{6}=11\end{align}

\begin{align}When\; x = -4, y = \frac{(-4)^3 + 2}{6}=\frac{-62}{6}=\frac{-31}{3}\end{align}

Hence, the points required on the curve are

\begin{align} (4,11)\; and \;(-4,\frac{-31}{3}).\end{align}

- Q:- Given an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive. - Q:- Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y} - Q:- Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.
- Q:- Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as

R = {(a, b): b = a + 1} is reflexive, symmetric or transitive. - Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b
^{2}} is neither reflexive nor symmetric nor transitive. - Q:-
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

(i)

*f*:**R → R**defined by*f(x)*= 3 – 4x(ii)

*f*:**R → R**defined by*f(x)*= 1 + x^{2 } - Q:- Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
- Q:-
Show that the Modulus Function

*f*: R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative. - Q:-
Prove that the Greatest Integer Function

*f*: R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x. - Q:- Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.

- Q:- The volume of a cube is increasing at the rate of 8 cm3/s. How fast is the surface area increasing when the length of an edge is 12 cm?
- Q:-
Show that the Modulus Function

*f*: R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative. - Q:-
The total cost

*C*(*x*) in Rupees associated with the production of*x*units of an item is given byC(X) = 0.007 x

^{3}- 0.003x^{2}+ 15x + 4000Find the marginal cost when 17 units are produced.

- Q:- Find the rate of change of the area of a circle with respect to its radius r when

(a) r = 3 cm

(b) r = 4 cm - Q:-
Determine order and degree(if defined) of differential equation (y

^{m})^{2}+ (y^{n})^{3}+ (y')^{4}+ y^{5}=0 - Q:-
The length

*x*of a rectangle is decreasing at the rate of 5 cm/minute and the width*y*is increasing at the rate of 4 cm/minute. When*x*= 8 cm and*y*= 6 cm, find the rates of change of (a) the perimeter, and (b) the area of the rectangle. - Q:-
Show that the Signum Function

*f*: R → R, given byis neither one-one nor onto

**.** - Q:-
Let

*f*: N → N be defined by

State whether the function*f*is bijective. Justify your answer. - Q:-
Classify the following measures as scalars and vectors.

(i) 10 kg (ii) 2 metres north-west (iii) 40°

(iv) 40 watt (v) 10

^{–19}coulomb (vi) 20 m/s^{2} - Q:-
An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long?

- NCERT Chapter