Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?
The volume of a cone (V) with radius (r) and height (h) is given by,
\begin{align}V=\frac{1}{3}\pi r^2h\end{align}
It is given that,
\begin{align}h=\frac{1}{6} r\Rightarrow r =6h\end{align}
\begin{align}\therefore V=\frac{1}{3}\pi (6h)^2.h = 12\pi h^3\end{align}
The rate of change of volume with respect to time (t) is given by,
\begin{align} \frac{dV}{dt}=12 \pi \frac{d}{dh}(h^3).\frac{dh}{dt}[By\; Chain\; Rule]\end{align}
\begin{align}=12 \pi (3h^2).\frac{dh}{dt}\end{align}
\begin{align}=36 \pi h^2.\frac{dh}{dt}\end{align}
It is also given that
\begin{align}\frac{dV}{dt}=12\;cm^3/s \end{align}
Therefore, when h = 4 cm, we have:
\begin{align}12=36\pi (4)^2.\frac{dh}{dt}\end{align}
\begin{align}\Rightarrow \frac{dh}{dt}=\frac{12}{36\pi (16)}=\frac{1}{48\pi}\end{align}
Hence, when the height of the sand cone is 4 cm, its height is increasing at the rate of
\begin{align}\frac{1}{48\pi}.\end{align}
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Answer the following as true or false.
\begin{align}(i) \overrightarrow{a}\; and\; \overrightarrow{-a}\; are\; collinear.\end{align}
(ii) Two collinear vectors are always equal in magnitude.
(iii) Two vectors having same magnitude are collinear.
(iv) Two collinear vectors having the same magnitude are equal.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
A balloon, which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm.
Show that the function f : R* → R* defined by f(x) = 1/x is one-one and onto,where R* is the set of all non-zero real numbers. Is the result true, if the domain R* is replaced by N with co-domain being same as R* ?
A particle moves along the curve 6y = x3 + 2. Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate.
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
The total cost C (x) in Rupees associated with the production of x units of an item is given by
C(X) = 0.007 x3 - 0.003x2 + 15x + 4000
Find the marginal cost when 17 units are produced.