It is given that,
\begin{align} \frac{d}{dx} f(x) = 4x^3 - \frac{3}{x^4}\end{align}
∴ Anti derivative of
\begin{align} 4x^3 - \frac{3}{x^4} = f(x)\end{align}
∴ \begin{align} f(x)= \int \left(4x^3 - \frac{3}{x^4}\right).dx\end{align}
\begin{align} f(x)= 4\int x^3.dx - 3\int {x^{-4}}.dx\end{align}
\begin{align} f(x)= 4\left(\frac {x^4}{4}\right) - 3\left(\frac {x^{-3}}{-3}\right) + C\end{align}
∴ \begin{align} f(x)= x^4 + \frac{1}{x^3} + C\end{align}
Also, f(2) = 0
∴ \begin{align} f(2) =\left(2\right)^4 + \frac{1}{\left(2\right)^3} + C = 0 \end{align}
=> \begin{align} 16 + \frac{1}{8} + C = 0 \end{align}
=> \begin{align} C = -\left(16 + \frac{1}{8}\right) \end{align}
=> \begin{align} C = \frac{-129}{8} \end{align}
∴ \begin{align} f(x)= x^4 + \frac{1}{x^3} -\frac{129}{8} \end{align}
Hence, the correct answer is A.
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
The order of the differential equation
\begin{align}2x^2\frac{d^2y}{dx^2}\;- \;3\frac{dy}{dx}\;+ y=\;0\end{align}
is (A) 2 (B) 1 (C) 0 (D) not defined
Letbe a function defined as
. The inverse of f is map g: Range
(A)
(B)
(C)
(D)
If f: R → R be given by f(x) = , then fof(x) is
(A)
(B) x3
(C) x
(D) (3 – x3).
Let f: X → Y be an invertible function. Show that the inverse of f –1 is f, i.e., (f–1)–1 = f.
Consider f : {1, 2, 3} → {a, b, c} given by f(1) = a, f(2) = b and f(3) = c. Find f –1 and show that (f –1)–1 = f.
Let f : X → Y be an invertible function. Show that f has unique inverse.
(Hint: suppose g1 and g2 are two inverses of f. Then for all y ∈ Y, fog1(y) = 1Y(y) = fog2(y). Use one-one ness of f).
Consider f : R+ → [– 5, ∞) given by f(x) = 9x2 + 6x – 5. Show that f is invertible
with .
Consider f : R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with the inverse f–1 of f given by , where R+ is the set of all non-negative real numbers.
Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
Show that f : [–1, 1] → R, given by is one-one. Find the inverse of the function f : [–1, 1] → Range f.
(Hint: For y ∈ Range f, y =, for some x in [ - 1, 1], i.e.,
)