Question Answers: NCERT Class 12 Mathematics
Welcome to the Chapter - , Class 12 Mathematics - NCERT Solutions page. Here, we provide detailed question answers for Chapter - .The page is designed to help students gain a thorough understanding of the concepts related to natural resources, their classification, and sustainable development.
Our solutions explain each answer in a simple and comprehensive way, making it easier for students to grasp key topics and excel in their exams. By going through these question answers, you can strengthen your foundation and improve your performance in Class 12 Mathematics. Whether you're revising or preparing for tests, this chapter-wise guide will serve as an invaluable resource.
No Records Found
Key Features of NCERT Class 12 Mathematics Chapter '' question answers :
- All chapter question answers with detailed explanations.
- Simple language for easy comprehension.
- Aligned with the latest NCERT guidelines.
- Perfect for exam preparation and revision.
Popular Questions of Class 12 Mathematics
- Q:- Given an example of a relation. Which is
(i) Symmetric but neither reflexive nor transitive.
(ii) Transitive but neither reflexive nor symmetric.
(iii) Reflexive and symmetric but not transitive.
(iv) Reflexive and transitive but not symmetric.
(v) Symmetric and transitive but not reflexive.
- Q:- Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.
- Q:- Determine whether each of the following relations are reflexive, symmetric and transitive:
(i) Relation R in the set A = {1, 2, 3,13, 14} defined as
R = {(x, y): 3x − y = 0}
(ii) Relation R in the set N of natural numbers defined as
R = {(x, y): y = x + 5 and x < 4}
(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as
R = {(x, y): y is divisible by x}
(iv) Relation R in the set Z of all integers defined as
R = {(x, y): x − y is as integer}
(v) Relation R in the set A of human beings in a town at a particular time given by
(a) R = {(x, y): x and y work at the same place}
(b) R = {(x, y): x and y live in the same locality}
(c) R = {(x, y): x is exactly 7 cm taller than y}
(d) R = {(x, y): x is wife of y}
(e) R = {(x, y): x is father of y}
- Q:- Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as
R = {(a, b): b = a + 1} is reflexive, symmetric or transitive.
- Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b2} is neither reflexive nor symmetric nor transitive.
- Q:-
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
- Q:- Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
- Q:-
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
- Q:-
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
- Q:- Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.
Recently Viewed Questions of Class 12 Mathematics
- Q:-
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?
- Q:- \begin{align} \int \frac{x^3 + 3x + 4}{\sqrt{x}} . dx\end{align}
- Q:- Find the principal value of \begin{align} sec^{-1}\left(\frac{2}{\sqrt3}\right)\end{align}
- Q:-
The rate of change of the area of a circle with respect to its radius r at r = 6 cm is
(A) 10π (B) 12π (C) 8π (D) 11π
- Q:-
Consider f : {1, 2, 3} → {a, b, c} given by f(1) = a, f(2) = b and f(3) = c. Find f –1 and show that (f –1)–1 = f.
- Q:- \begin{align} \int \frac {sec^2 x}{Coses^2 x} . dx\end{align}
- Q:- If A=\(\begin{bmatrix}1 & 2\\4 & 2\end{bmatrix}\), then show that |2A| = 4|A|
- Q:- If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?
- Q:-
Let f, g and h be functions from R to R. Show that
(f + g)oh = foh + goh
(f . g)oh = (foh) . (goh)
- Q:-
Consider f : R+ → [– 5, ∞) given by f(x) = 9x2 + 6x – 5. Show that f is invertible
with
.
- All Chapters Of Class 12 Mathematics